Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 23,
  • pp. 7538-7571
  • (2022)

Diamond Integrated Quantum Nanophotonics: Spins, Photons and Phonons

Open Access Open Access

Abstract

Integrated photonic devices in diamond have tremendous potential for many quantum applications, including long-distance quantum communication, quantum information processing, and quantum sensing. These devices benefit from diamond's combination of exceptional thermal, optical, and mechanical properties. Its wide electronic bandgap makes diamond an ideal host for a variety of optical active spin qubits that are key building blocks for quantum technologies. In landmark experiments, diamond spin qubits have enabled demonstrations of remote entanglement, memory-enhanced quantum communication, and multi-qubit spin registers with fault-tolerant quantum error correction, leading to the realization of multinode quantum networks. These advances put diamond at the forefront of solid-state material platforms for quantum information processing. Recent developments in diamond nanofabrication techniques provide a promising route to further scaling of these landmark experiments towards real-life quantum technologies. In this paper, we focus on the recent progress in creating integrated diamond quantum photonic devices, with particular emphasis on spin-photon interfaces, cavity optomechanical devices, and spin-phonon transduction. Finally, we discuss prospects and remaining challenges for the use of diamond in scalable quantum technologies.

PDF Article

References

  • View by:

  1. W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik, vol. 9, pp. 349–352, 1922. [Online]. Available: http://doi.org/10.1007/BF01326983
  2. D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, pp. 255–261, 1995. [Online]. Available: https://doi.org/10.1126/science.270.5234.255
  3. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812
  4. N. Gisin and R. Thew, “Quantum communication,” Nature Photon., vol. 1, pp. 165–171, 2007. [Online]. Available: http://doi.org/10.1038/nphoton.2007.22
  5. H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008. [Online]. Available: http://doi.org/10.1038/nature07127
  6. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149
  7. S. L. Vittorio Giovannetti and L. Maccone, “Quantum metrology,” Phys. Rev. Lett., vol. 96, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.96.010401
  8. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002
  9. F. Arute, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, 2019. [Online]. Available: http://doi.org/10.1038/s41586-019-1666-5
  10. H.-S. Zhong, “Quantum computational advantage using photons,” Science, vol. 370, pp. 1460–1463, 2020. [Online]. Available: https://doi.org/10.1126/science.abe8770
  11. Y. Wu, “Strong quantum computational advantage using a superconducting quantum processor,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.180501
  12. L. S. Madsen, “Quantum computational advantage with a programmable photonic processor,” Nature, vol. 606, pp. 75–81, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04725-x
  13. S.-K. Liao, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.120.030501
  14. J. Yin, “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2401-y
  15. P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165
  16. L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Modern Phys., vol. 82, pp. 1209–1224, 2010. [Online]. Available: https://doi.org/10.1103/RevModPhys.82.1209
  17. S. Ritter, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012. [Online]. Available: http://doi.org/10.1038/nature11023
  18. A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Modern Phys., vol. 87, pp. 1379–1418, 2015. [Online]. Available: https://doi.org/10.1103/RevModPhys.87.1379
  19. O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176
  20. L. Stephenson, “High-rate, high-fidelity entanglement of qubits across an elementary quantum network,” Phys. Rev. Lett., vol. 124, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.110501
  21. L. Egan, “Fault-tolerant control of an error-corrected qubit,” Nature, vol. 598, pp. 281–286, 2021. [Online]. Available: https://doi.org/10.1038/s41586-021-03928-y
  22. S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506
  23. S. Langenfeld, “Quantum teleportation between remote qubit memories with only a single photon as a resource,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.130502
  24. T. van Leent, “Entangling single atoms over 33 km telecom fibre,” Nature, vol. 607, no. 7917, pp. 69–73, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04764-4
  25. W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266
  26. M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, pp. 1169–1174, 2013. [Online]. Available: https://doi.org/10.1126/science.1231930
  27. R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217
  28. G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863
  29. D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2
  30. J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229
  31. P. Kómár, “A quantum network of clocks,” Nature Phys., vol. 10, no. 8, pp. 582–587, 2014. [Online]. Available: http://doi.org/10.1038/nphys3000
  32. A. K. Ekert, “Quantum cryptography based on bell's theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, 1991. [Online]. Available: https://doi.org/10.1103/PhysRevLett.67.661
  33. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145
  34. T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nature Photon., vol. 8, pp. 356–363, May 2014. [Online]. Available: http://doi.org/10.1038/nphoton.2014.53
  35. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288
  36. M. H. Abobeih, “Fault-tolerant operation of a logical qubit in a diamond quantum processor,” Nature, vol. 606, pp. 884–889, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04819-6
  37. R. Valivarthi, “Quantum teleportation across a metropolitan fibre network,” Nature Photon., vol. 10, pp. 676–680, 2016. [Online]. Available: http://doi.org/10.1038/nphoton.2016.180
  38. M. E. Wandel, “Attenuation in silica-based optical fibers,” Ph.D. dissertation, DTU, 2006. [Online]. Available: https://orbit.dtu.dk/en/publications/attenuation-in-silica-based-optical-fibers
  39. W. Pfaff, “Unconditional quantum teleportation between distant solid-state quantum bits,” Science, vol. 345, no. 6196, pp. 532–535, 2014. [Online]. Available: https://doi.org/10.1126/science.1253512
  40. N. Kalb, “Entanglement distillation between solid-state quantum network nodes,” Science, vol. 356, no. 6341, pp. 928–932, 2017. [Online]. Available: http://doi.org/10.1126/science.aan0070
  41. R. E. Evans, “Photon-mediated interactions between quantum emitters in a diamond nanocavity,” Science, vol. 362, pp. 662–665, 2018. [Online]. Available: https://doi.org/10.1126/science.aau4691
  42. M. K. Bhaskar, “Experimental demonstration of memory-enhanced quantum communication,” Nature, vol. 580, pp. 60–64, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2103-5
  43. M. Pompili, “Experimental demonstration of entanglement delivery using a quantum network stack,” NPJ Quantum Inf., vol. 8, 2022, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-022-00631-2
  44. P.-J. Stas, “Robust multi-qubit quantum network node with integrated error detection,” 2022, arXiv:2207.13128. [Online]. Available: https://doi.org/10.48550/arXiv.2207.13128
  45. E. Togan, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature, vol. 466, no. 7307, pp. 730–734, 2010. [Online]. Available: http://doi.org/10.1038/nature09256
  46. H. Bernien, “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, pp. 86–90, May 2013. [Online]. Available: http://doi.org/10.1038/nature12016
  47. B. Hensen, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–686, 2015. [Online]. Available: http://doi.org/10.1038/nature15759
  48. P. C. Humphreys, “Deterministic delivery of remote entanglement on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273, 2018. [Online]. Available: http://doi.org/10.1038/s41586-018-0200-5
  49. M. Pompili, “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, 2021. [Online]. Available: http://doi.org/10.1126/science.abg1919
  50. S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y
  51. J. Hofmann, “Heralded entanglement between widely separated atoms,” Science, vol. 336, no. 6090, pp. 72–75, 2012. [Online]. Available: https://doi.org/10.1126/science.1221856
  52. S. Daiss, “A quantum-logic gate between distant quantum-network modules,” Science, vol. 371, no. 6529, pp. 614–617, 2021. [Online]. Available: https://doi.org/10.1126/science.abe3150
  53. D. L. Moehring, “Entanglement of single-atom quantum bits at a distance,” Nature, vol. 449, no. 7158, pp. 68–71, 2007. [Online]. Available: http://doi.org/10.1038/nature06118
  54. D. Bluvstein, “A quantum processor based on coherent transport of entangled atom arrays,” Nature, vol. 604, pp. 451–456, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04592-6
  55. T. M. Graham, “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer,” Nature, vol. 604, pp. 457–462, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04603-6
  56. P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5
  57. A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z
  58. S. Krinner, “Realizing repeated quantum error correction in a distance-three surface code,” Nature, vol. 605, no. 7911, pp. 669–674, 2022. [Online]. Available: http://doi.org/10.1038/s41586-022-04566-8
  59. R. J. Warburton, “Single spins in self-assembled quantum dots,” Nature Mater., vol. 12, no. 6, pp. 483–493, 2013. [Online]. Available: https://doi.org/10.1038/nmat3585
  60. R. Stockill, “Phase-tuned entangled state generation between distant spin qubits,” Phys. Rev. Lett., vol. 119, 2017, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.119.010503
  61. L. Zhai, “Quantum interference of identical photons from remote GaAs quantum dots,” Nature Nanotechnol., vol. 17, pp. 829–833, 2022. [Online]. Available: https://doi.org/10.1038/s41565-022-01131-2
  62. M. Zhong, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature, vol. 517, no. 7533, pp. 177–180, 2015. [Online]. Available: http://doi.org/10.1038/nature14025
  63. T. Zhong, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science, vol. 357, no. 6358, pp. 1392–1395, 2017. [Online]. Available: https://doi.org/10.1126/science.aan5959
  64. A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601
  65. C. P. Anderson, “Electrical and optical control of single spins integrated in scalable semiconductor devices,” Science, vol. 366, pp. 1225–1230, 2019. [Online]. Available: https://doi.org/doi/10.1126/science.aax9406
  66. J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9
  67. D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102
  68. N. T. Son, “Developing silicon carbide for quantum spintronics,” Appl. Phys. Lett., vol. 116, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0004454
  69. A. Bourassa, “Entanglement and control of single nuclear spins in isotopically engineered silicon carbide,” Nature Mater., vol. 19, no. 12, pp. 1319–1325, 2020. [Online]. Available: https://doi.org/10.1038/s41563-020-00802-6
  70. G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192
  71. C. Babin, “Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence,” Nature Mater., vol. 21, no. 1, pp. 67–73, 2022. [Online]. Available: https://doi.org/10.1038/s41563-021-01148-3
  72. D. M. Lukin, “Optical superradiance of a pair of color centers in an integrated silicon-carbide-on-insulator microresonator,” 2022, arXiv:2202.04845. [Online]. Available: https://doi.org/10.48550/arXiv.2202.04845
  73. A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031
  74. C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys.: Conf. Ser., vol. 264, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1742-6596/264/1/012025
  75. P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3
  76. D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd
  77. M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, no. 9, pp. 963–970, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.000963
  78. M. J. Burek, “Diamond optomechanical crystals,” Optica, vol. 3, no. 12, pp. 1404–1411, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.001404
  79. N. Lauk, “Perspectives on quantum transduction,” Quantum Sci. Technol., vol. 5, no. 2, 2020, Art. no. . [Online]. Available: http://doi.org/10.1088/2058-9565/ab788a
  80. Y. Chu and S. Gröblacher, “A perspective on hybrid quantum opto- and electromechanical systems,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0021088
  81. L. Fan, “Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv., vol. 4, 2018, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aar4994
  82. M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6
  83. K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501
  84. H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999
  85. T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2
  86. X. Rong, “Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions,” Nature Commun., vol. 6, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms9748
  87. Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb
  88. I. Bayn, “Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks,” Nano Lett., vol. 15, pp. 1751–1758, 2015. [Online]. Available: https://doi.org/10.1021/nl504441m
  89. M. Fuechsle, “A single-atom transistor,” Nature Nanotechnol., vol. 7, pp. 242–246, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.21
  90. S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .
  91. S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425
  92. A. Zaitsev, Optical Properties of Diamond. Berlin, Heidelberg, Germany: Springer-Verlag, 2001. [Online]. Available: https://doi.org/10.1007/978-3-662-04548-0
  93. I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501
  94. L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549
  95. T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304
  96. G. Balasubramanian, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mater., vol. 8, no. 5, pp. 383–387, 2009. [Online]. Available: http://doi.org/10.1038/nmat2420
  97. L. Childress, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science, vol. 314, pp. 281–285, 2006. [Online]. Available: https://doi.org/10.1126/science.1131871
  98. P. C. Maurer, “Room-temperature quantum bit memory exceeding one second,” Science, vol. 336, no. 6086, pp. 1283–1286, 2012. [Online]. Available: http://doi.org/10.1126/science.1220513
  99. C. E. Bradley, “A ten-qubit solid-state spin register with quantum memory up to one minute,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031045
  100. F. Dolde, “Room-temperature entanglement between single defect spins in diamond,” Nature Phys., vol. 9, no. 3, pp. 139–143, 2013. [Online]. Available: http://doi.org/10.1038/nphys2545
  101. M. V. G. Dutt, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science, vol. 316, no. 5829, pp. 1312–1316, 2007. [Online]. Available: http://www.doi.org/10.1126/science.1139831
  102. G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026
  103. D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q
  104. P. R. Dolan, “Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity,” Opt. Exp., vol. 26, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.26.007056
  105. E. N. Knall, “Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System,” Phys. Rev. Lett., vol. 129, no. 5, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.129.053603
  106. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001
  107. J. N. Becker and E. Neu, “The silicon vacancy center in diamond,” vol. 103, pp. 201–235, 2020. [Online]. Available: https://doi.org/10.1016/bs.semsem.2020.04.001
  108. S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003
  109. L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503
  110. G. Waldherr, “Quantum error correction in a solid-state hybrid spin register,” Nature, vol. 506, pp. 204–207, 2014. [Online]. Available: http://doi.org/10.1038/nature12919
  111. J. Cramer, “Repeated quantum error correction on a continuously encoded qubit by real-time feedback,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms11526
  112. M. H. Abobeih, “One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment,” Nature Commun., vol. 9, 2018, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-018-04916-z
  113. C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w
  114. A. Gali and J. R. Maze, “Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties,” Phys. Rev. B, vol. 88, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.88.235205
  115. U. Wahl, “Direct structural identification and quantification of the split-vacancy configuration for implanted Sn in diamond,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.045301
  116. S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010
  117. L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402
  118. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303
  119. C. Hepp, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett., vol. 112, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.036405
  120. B. C. Rose, “Observation of an environmentally insensitive solid-state spin defect in diamond,” Science, vol. 361, pp. 60–63, 2018. [Online]. Available: https://www.doi.org/10.1126/science.aao0290
  121. Z.-H. Zhang, “Neutral silicon vacancy centers in undoped diamond via surface control,” 2022, arXiv:2206.13698. [Online]. Available: http://arxiv.org/abs/2206.13698
  122. L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013
  123. I. P. Radko, “Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond,” Opt. Exp., vol. 24, 2016, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.24.027715
  124. D. Riedel, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X, vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.7.031040
  125. T. Ishikawa, “Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer,” Nano Lett., vol. 12, pp. 2083–2087, 2012. [Online]. Available: https://doi.org/10.1021/nl300350r
  126. E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358
  127. L. Rogers, “Multiple intrinsically identical single-photon emitters in the solid state,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms5739
  128. A. Sipahigil, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science, vol. 354, pp. 847–850, 2016. [Online]. Available: https://doi.org/10.1126/science.aah6875
  129. E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956
  130. A. Dietrich, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys., vol. 16, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/16/11/113019
  131. D. Sukachev, “Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett., vol. 119, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.223602
  132. S. Meesala, “Strain engineering of the silicon-vacancy center in diamond,” Phys. Rev. B, vol. 97, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.97.205444
  133. K. D. Jahnke, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys., vol. 17, no. 4, 2015, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/17/4/043011
  134. J. R. Maze, “Properties of nitrogen-vacancy centers in diamond: The group theoretic approach,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025025
  135. G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075
  136. N. Hedrich, “Nanoscale mechanics of antiferromagnetic domain walls,” Nature Phys., vol. 17, pp. 574–577, 2021. [Online]. Available: http://doi.org/10.1038/s41567-020-01157-0
  137. P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548
  138. J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512
  139. J. N. Becker, “All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.053603
  140. H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604
  141. A. Sipahigil, “Quantum interference of single photons from remote nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.143601
  142. A. Sipahigil, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.113602
  143. A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404
  144. Á. Gali, “Ab initio theory of the nitrogen-vacancy center in diamond,” Nanophotonics, vol. 8, pp. 1907–1943, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0154
  145. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501
  146. B. Pingault, “Coherent control of the silicon-vacancy spin in diamond,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15579
  147. A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411
  148. J. Kölbl, “Initialization of single spin dressed states using shortcuts to adiabaticity,” Phys. Rev. Lett., vol. 122, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.090502
  149. Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801
  150. L. J. Rogers, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.263602
  151. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401
  152. T. Schröder, “Quantum nanophotonics in diamond [Invited],” J. Opt. Soc. Amer. B, vol. 33, no. 4, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B65
  153. E. Janitz, M. K. Bhaskar, and L. Childress, “Cavity quantum electrodynamics with color centers in diamond,” Optica, vol. 7, no. 10, 2020, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.398628
  154. H. Wang and I. Lekavicius, “Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0024001
  155. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391
  156. A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213
  157. M. Povinelli, “Evanescent-wave bonding between optical waveguides,” Opt. Lett., vol. 30, no. 22, 2005, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.30.003042
  158. K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica, vol. 1, no. 6, pp. 414–420, 2014. [Online]. Available: https://doi.org/10.1364/OPTICA.1.000414
  159. M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236
  160. A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601
  161. J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091
  162. J. D. Cohen, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature, vol. 520, no. 7548, pp. 522–525, 2015. [Online]. Available: https://doi.org/10.1038/nature14349
  163. A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z
  164. A. G. Primo, “Accurate modeling and characterization of photothermal forces in optomechanics,” APL Photon., vol. 6, no. 8, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0055201
  165. M. Pinard and A. Dantan, “Quantum limits of photothermal and radiation pressure cooling of a movable mirror,” New J. Phys., vol. 10, no. 9, 2008, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/10/9/095012
  166. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801
  167. R. P. Mildren, Intrinsic Optical Properties of Diamond.Hoboken, NJ, USA: Wiley, 2013, pp. 1–34. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527648603.ch1
  168. J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4
  169. G. Eesley and M. D. Levenson, “Coherent, nonlinear two-phonon Raman spectra of diamond,” Opt. Lett., vol. 3, no. 5, pp. 178–180, 1978. [Online]. Available: https://doi.org/10.1364/OL.3.000178
  170. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950
  171. M. Kasperczyk, A. Jorio, E. Neu, P. Maletinsky, and L. Novotny, “Stokes–anti-stokes correlations in diamond,” Opt. Lett., vol. 40, no. 10, pp. 2393–2396, 2015. [Online]. Available: https://doi.org/10.1364/OL.40.002393
  172. Y. Okawachi, “Competition between Raman and Kerr effects in microresonator comb generation,” Opt. Lett., vol. 42, no. 14, pp. 2786–2789, 2017. [Online]. Available: https://doi.org/10.1364/OL.42.002786
  173. M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217
  174. C.-H. Lu, “Generation of octave-spanning supercontinuum by Raman-assisted four-wave mixing in single-crystal diamond,” Opt. Exp., vol. 22, no. 4, pp. 4075–4082, 2014. [Online]. Available: https://doi.org/10.1364/OE.22.004075
  175. O. Lux, “Multi-octave frequency comb generation by $\chi$ (3)-nonlinear optical processes in CVD diamond at low temperatures,” Laser Phys. Lett., vol. 11, no. 8, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1612-2011/11/8/086101
  176. P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica, vol. 2, no. 11, pp. 924–928, 2015. [Online]. Available: https://doi.org/10.1364/OPTICA.2.000924
  177. P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318
  178. B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72
  179. H. Pinto and R. Jones, “Theory of the birefringence due to dislocations in single crystal CVD diamond,” J. Physics: Condens. Matter, vol. 21, no. 36, 2009, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0953-8984/21/36/364220
  180. A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819
  181. Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638
  182. V. P. Adiga, “Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators,” Phys. Rev. B, vol. 79, no. 24, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.79.245403
  183. M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917
  184. B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051
  185. I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018
  186. J. Riedrich-Möller, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nature Nanotechnol., vol. 7, pp. 69–74, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2011.190
  187. I. Bayn, “Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks,” Appl. Phys. Lett., vol. 105, no. 21, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4902562
  188. M. J. Burek, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6718
  189. L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002
  190. M. J. Burek, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl., vol. 8, pp. 1–10, 2017. [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.024026
  191. S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118
  192. J. V. Cady, “Diamond optomechanical crystals with embedded nitrogen-vacancy centers,” Quantum Sci. Technol., vol. 4, no. 2, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/ab043e
  193. B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A
  194. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604
  195. P. Rath, “Diamond electro-optomechanical resonators integrated in nanophotonic circuits,” Appl. Phys. Lett., vol. 105, no. 25, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4901105
  196. J. Riedrich-Möller, “Nanoimplantation and purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett., vol. 106, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4922117
  197. N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349
  198. P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274
  199. T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316
  200. M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122
  201. C. Huang, “Anisotropy effects in diamond under nanoindentation,” Carbon, vol. 132, pp. 606–615, 2018. [Online]. Available: https://doi.org/10.1016/j.carbon.2018.02.066
  202. A. Lang, “The strain-optical constants of diamond: A brief history of measurements,” Diamond Related Mater., vol. 18, no. 1, pp. 1–5, 2009. [Online]. Available: https://doi.org/10.1016/j.diamond.2008.07.020
  203. A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102
  204. D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516
  205. D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w
  206. M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832
  207. N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511
  208. F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508
  209. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524
  210. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9
  211. N. H. Wan, “Large-scale integration of artificial atoms in hybrid photonic circuits,” Nature, vol. 583, pp. 226–231, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2441-3
  212. B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346
  213. P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710
  214. J. Teufel, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature, vol. 475, no. 7356, pp. 359–363, 2011. [Online]. Available: https://doi.org/10.1038/nature10261
  215. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715
  216. M. Woolley and A. Clerk, “Two-mode back-action-evading measurements in cavity optomechanics,” Phys. Rev. A, vol. 87, no. 6, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.87.063846
  217. M. C. Kuzyk and H. Wang, “Controlling multimode optomechanical interactions via interference,” Phys. Rev. A, vol. 96, no. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.96.023860
  218. C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401
  219. A. Pontin, “Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system,” Phys. Rev. Lett., vol. 116, no. 10, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.103601
  220. W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114
  221. C. Dong, J. Zhang, V. Fiore, and H. Wang, “Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes,” Optica, vol. 1, no. 6, pp. 425–428, 2014. [Online]. Available: https://doi.org/10.1364/OPTICA.1.000425
  222. P. Kharel, “High-frequency cavity optomechanics using bulk acoustic phonons,” Sci. Adv., vol. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aav0582
  223. L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850
  224. M. J. Weaver, “Coherent optomechanical state transfer between disparate mechanical resonators,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-017-00968-9
  225. L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601
  226. M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902
  227. M. Forsch, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nature Phys., vol. 16, no. 1, pp. 69–74, 2020. [Online]. Available: https://doi.org/10.1038/s41567-019-0673-7
  228. N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077
  229. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201
  230. Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603
  231. D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x
  232. P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1
  233. F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993
  234. J. P. Hadden, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett., vol. 97, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3519847
  235. D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036
  236. M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818
  237. L. Marseglia, “Nanofabricated solid immersion lenses registered to single emitters in diamond,” Appl. Phys. Lett., vol. 98, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573870
  238. P. Siyushev, “Optical and microwave control of germanium-vacancy center spins in diamond,” Phys. Rev. B, vol. 96, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.96.081201
  239. D. Chen, “Optical gating of resonance fluorescence from a single germanium vacancy color center in diamond,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org10.1103/PhysRevLett.123.033602
  240. S. B. van Dam, “Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.161203
  241. M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534
  242. K. G. Lee, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photon., vol. 5, pp. 166–169, 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2010.312
  243. L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299
  244. D. Riedel, “Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond,” Phys. Rev. Appl., vol. 2, 2014, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.2.064011
  245. X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545
  246. X.-L. Chu, “Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter,” Optica, vol. 1, no. 4, pp. 203–208, 2014. [Online]. Available: http://doi.org/10.1364/OPTICA.1.000203
  247. C. Dory, “Inverse-designed diamond photonics,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-11343-1
  248. S. Chakravarthi, “Inverse-designed photon extractors for optically addressable defect qubits,” Optica, vol. 7, no. 12, pp. 1805–1811, 2020 . [Online]. Available: https://doi.org/10.1364/OPTICA.408611
  249. T. M. Babinec, “A diamond nanowire single-photon source,” Nature Nanotechnol., vol. 5, pp. 195–199, 2010. [Online]. Available: http://doi.org/10.1038/nnano.2010.6
  250. B. J. Hausmann, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Related Mater., vol. 19, no. 5, pp. 621–629, 2010. [Online]. Available: https://doi.org/10.1016/j.diamond.2010.01.011
  251. L. Marseglia, “Bright nanowire single photon source based on SiV centers in diamond,” Opt. Exp., vol. 26, no. 1, pp. 80–89, 2018. [Online]. Available: https://doi.org/10.1364/OE.26.000080
  252. E. Neu, “Photonic nano-structures on (111)-oriented diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4871580
  253. S. A. Momenzadeh, “Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers,” Nano Lett., vol. 15, pp. 165–169, 2015. [Online]. Available: https://doi.org/10.1021/nl503326t
  254. P. Maletinsky, “A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres,” Nature Nanotechnol., vol. 7, pp. 320–324, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.50
  255. P. Appel, “Fabrication of all diamond scanning probes for nanoscale magnetometry,” Rev. Sci. Instrum., vol. 87, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4952953
  256. N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007
  257. D. Chen, “Quantum interference of resonance fluorescence from Germanium-vacancy color centers in diamond,” Nano Lett., vol. 22, no. 15, pp. 6306–6312, 2022. [Online]. Available: https://doi.org/10.1021/acs.nanolett.2c01959
  258. J. Arjona Martínez, “Photonic indistinguishability of the tin-vacancy center in nanostructured diamond,” 2022, arXiv:2206.15239. [Online]. Available: https://doi.org/10.48550/arXiv.2206.15239
  259. C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240
  260. W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58
  261. S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577
  262. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, 1946, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRev.69.674.2
  263. D. Englund, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett., vol. 10, pp. 3922–3926, 2010. [Online]. Available: https://doi.org/10.1021/nl101662v
  264. J. Riedrich-Möller, “Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond,” Nano Lett., vol. 14, no. 9, pp. 5281–5287, 2014. [Online]. Available: http://doi.org/10.1021/nl502327b
  265. T. Jung, “Spin measurements of NV centers coupled to a photonic crystal cavity,” APL Photon., vol. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5120120
  266. L. Li, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms7173
  267. S. Sun, “Cavity-enhanced Raman emission from a single color center in a solid,” Phys. Rev. Lett., vol. 121, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.121.083601
  268. C. T. Nguyen, “An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond,” Phys. Rev. B, vol. 100, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.100.165428
  269. A. E. Rugar, “Quantum photonic interface for tin-vacancy centers in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevX.11.031021
  270. K. Kuruma, “Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond,” Appl. Phys. Lett., vol. 118, no. 23, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0051675
  271. M. Bhaskar, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett., vol. 118, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.118.223603
  272. J. P. Hadden, “Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.43.003586
  273. A. E. Rugar, “Narrow-linewidth tin-vacancy centers in a diamond waveguide,” ACS Photon., vol. 7, pp. 2356–2361, 2020. [Online]. Available: https://doi.org/10.1021/acsphotonics.0c00833
  274. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52
  275. B. J. Hausmann, “Coupling of $\text {NV}$ centers to photonic crystal nanobeams in diamond,” Nano Lett., vol. 13, pp. 5791–5796, 2013. [Online]. Available: https://doi.org/10.1021/nl402174g
  276. A. Faraon, “Quantum photonic devices in single-crystal diamond,” New J. Phys., vol. 15, no. 2, 2013, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/15/2/025010
  277. P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007
  278. M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001
  279. M. Gould, “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. America B, vol. 33, no. 3, pp. B35–B42, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B35
  280. J. L. Zhang, “Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers,” Nano Lett., vol. 16, no. 1, pp. 212–217, 2016. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b03515
  281. K. G. Fehler, “Hybrid quantum photonics based on artificial atoms placed inside one hole of a photonic crystal cavity,” ACS Photon., vol. 8, pp. 2635–2641, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00530
  282. S. Johnson, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys., vol. 17, 2015, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/17/12/122003
  283. H. Kaupp, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.054010
  284. J. Benedikter, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl., vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.7.024031
  285. S. Häußler, “Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.165310
  286. R. Høy Jensen, “Cavity-enhanced photon emission from a single germanium-vacancy center in a diamond membrane,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.064016
  287. M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049
  288. P. Tamarat, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett., vol. 97, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.97.083002
  289. Y. Chu, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett., vol. 14, pp. 1982–1986, 2014. [Online]. Available:https://doi.org/10.1021/nl404836p
  290. K. C. Wong, “Microscopic study of optically stable coherent color centers in diamond generated by high-temperature annealing,” Phys. Rev. Appl., vol. 18, no. 2, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.18.024044
  291. M. Kasperczyk, “Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures,” Phys. Rev. B, vol. 102, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.102.075312
  292. M. Ruf, “Optically coherent nitrogen-vacancy centers in micrometer-thin etched diamond membranes,” Nano Lett., vol. 19, pp. 3987–3992, 2019. [Online]. Available: http://doi.org/10.1021/acs.nanolett.9b01316
  293. B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362
  294. P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948
  295. N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.
  296. K.-M. C. Fu, “Coupling of nitrogen-vacancy centers in diamond to a gap waveguide,” Appl. Phys. Lett., vol. 93, no. 23, 2008, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3045950
  297. K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023
  298. S. L. Mouradian, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.031009
  299. E. R. Schmidgall, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett., vol. 18, pp. 1175–1179, 2018. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b04717
  300. P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556
  301. D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721
  302. L. Greuter, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4896415
  303. D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458
  304. D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036
  305. N. Tomm, “A bright and fast source of coherent single photons,” Nature Nanotechnol., vol. 16, pp. 399–403, 2021. [Online]. Available: http://doi.org/10.1038/s41565-020-00831-x
  306. E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844
  307. S. Flågan, P. Maletinsky, R. J. Warburton, and D. Riedel, “Microcavity platform for widely-tunable optical double resonance,” Optica, vol. 9, pp. 1197–1209, 2022. [Online]. Available: https://doi.org/10.1364/OPTICA.466003
  308. R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659
  309. J. F. Barry, “Sensitivity optimization for NV-diamond magnetometry,” Rev. Mod. Phys., vol. 92, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.92.015004
  310. V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801
  311. P. Neumann, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett., vol. 13, no. 6, pp. 2738–2742, 2013. [Online]. Available: https://doi.org/10.1021/nl401216y
  312. K. O. Ho, “Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy ($\text {NV})$ center in diamond,” J. Appl. Phys., vol. 129, no. 24, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0052233
  313. M. E. Trusheim and D. Englund, “Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond,” New J. Phys., vol. 18, no. 12, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/aa5040
  314. V. V. Soshenko, “Nuclear spin gyroscope based on the nitrogen vacancy center in diamond,” Phys. Rev. Lett., vol. 126, no. 19, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.197702
  315. F. Dolde, “Nanoscale detection of a single fundamental charge in ambient conditions using the $\text{NV}^-$ center in diamond,” Phys. Rev. Lett., vol. 112, no. 9, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.097603
  316. M. S. Grinolds, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nature Nanotechnol., vol. 9, pp. 279–284, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.30
  317. D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781
  318. D. Rugar, “Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor,” Nature Nanotechnol., vol. 10, pp. 120–124, 2015. [Online]. Available: http://doi.org/10.1038/nnano.2014.288
  319. T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299
  320. P. Glover and P. Mansfield, “Limits to magnetic resonance microscopy,” Rep. Prog. Phys., vol. 65, no. 10, 2002, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/65/10/203
  321. C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106
  322. M. H. Abobeih, “Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor,” Nature, vol. 576, no. 7787, pp. 411–415, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1834-7
  323. H. J. Mamin, “Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor,” Science, vol. 339, no. 6119, pp. 557–560, 2013. [Online]. Available: https://doi.org/10.1126/science.1231540
  324. T. Staudacher, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)$^{3}$ sample volume,” Science, vol. 339, no. 6119, pp. 561–563, 2013. [Online]. Available: https://doi.org/10.1126/science.1231675
  325. J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0
  326. N. Aslam, “Nanoscale nuclear magnetic resonance with chemical resolution,” Science, vol. 357, no. 6346, pp. 67–71, 2017. [Online]. Available: https://doi.org/10.1126/science.aam8697
  327. S. Schmitt, “Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor,” Science, vol. 356, no. 6340, pp. 832–837, 2017. [Online]. Available: https://doi.org/10.1126/science.aam5532
  328. J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009
  329. F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88
  330. J. F. Barry, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Nat. Acad. Sci., vol. 113, no. 49, pp. 14133–14138, 2016. [Online]. Available: https://doi.org/10.1073/pnas.1601513113
  331. M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed
  332. D. Cohen, “Magnetoencephalography: Detection of the brain's electrical activity with a superconducting magnetometer,” Science, vol. 175, no. 4022, pp. 664–666, 1972. [Online]. Available: https://doi.org/10.1126/science.175.4022.664
  333. R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291
  334. R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655
  335. R. Körber, “SQUIDS in biomagnetism: A roadmap towards improved healthcare,” Supercond. Sci. Technol., vol. 29, no. 11, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/0953-2048/29/11/113001
  336. E. Boto, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, vol. 555, no. 7698, pp. 657–661, 2018. [Online]. Available: https://doi.org/10.1038/nature26147
  337. K. Arai, “Millimetre-scale magnetocardiography of living rats with thoracotomy,” Commun. Phys., vol. 5, no. 1, pp. 1–10, 2022. [Online]. Available: https://doi.org/10.1038/s42005-022-00978-0
  338. H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216
  339. J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044
  340. J. L. Webb, “Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals,” Front. Phys., vol. 8, 2020, Art. no. . [Online]. Available: https://doi.org/10.3389/fphy.2020.522536
  341. J. M. Taylor, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Phys., vol. 4, pp. 810–816, 2008. [Online]. Available: https://doi.org/10.1038/nphys1075
  342. A. Dréau, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B, vol. 84, no. 19, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.84.195204
  343. G. Chatzidrosos, “Miniature cavity-enhanced diamond magnetometer,” Phys. Rev. Appl., vol. 8, no. 4, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.044019
  344. E. R. Eisenach, “Cavity-enhanced microwave readout of a solid-state spin sensor,” Nature Commun., vol. 12, no. 1, pp. 1–7, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-21256-7
  345. T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602
  346. A. M. Edmonds, “Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications,” Mater. Quantum Technol., vol. 1, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/0.1088/2633-4356/abd88a
  347. Z. Zhao, “Sub-nanotesla sensitivity at the nanoscale with a single spin,” 2022, arXiv:2205.04415. [Online]. Available: https://doi.org/10.48550/arXiv.2205.04415
  348. T. Wolf, “Subpicotesla diamond magnetometry,” Phys. Rev. X, vol. 5, no. 4, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041001
  349. M. Wu, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.4.021052
  350. M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7
  351. J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb
  352. M. Wu, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nature Nanotechnol., vol. 12, no. 2, pp. 127–131, 2017. [Online]. Available: https://doi.org/10.1038/nnano.2016.226
  353. G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386
  354. P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640
  355. A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201
  356. D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.
  357. G. S. MacCabe, “Nano-acoustic resonator with ultralong phonon lifetime,” Science, vol. 370, no. 6518, pp. 840–843, 2020. [Online]. Available: https://doi.org/10.1126/science.abc7312
  358. B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303
  359. I. Bertelli, “Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator,” Sci. Adv., vol. 6, 2020, Art. no. . [Online]. Available: https://www.science.org/doi/10.1126/sciadv.abd3556
  360. L. Thiel, “Probing magnetism in 2D materials at the nanoscale with single-spin microscopy,” Science, vol. 364, pp. 973–976, 2019. [Online]. Available: https://www.science.org/doi/10.1126/science.aav6926
  361. H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601
  362. B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535
  363. H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002
  364. D. Kikuchi, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Exp., vol. 10, 2017, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.7567/APEX.10.103004
  365. P. Andrich, “Long-range spin wave mediated control of defect qubits in nanodiamonds,” NPJ Quantum Inf., vol. 3, 2017, Art. no. . [Online]. Available: https://www.nature.com/articles/s41534-017-0029-z
  366. M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314
  367. P. Magnard, “Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.260502
  368. D. Najer, “A gated quantum dot strongly coupled to an optical microcavity,” Nature, vol. 575, no. 7784, pp. 622–627, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1709-y
  369. S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photon., vol. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4978204
  370. B. Machielse, “Quantum interference of electromechanically stabilized emitters in nanophotonic devices,” Phys. Rev. X, vol. 9, no. 3, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031022
  371. A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603
  372. J. M. Fink, “Climbing the jaynes-cummings ladder and observing its $\sqrt{n}$ nonlinearity in a cavity qed system,” Nature, vol. 454, pp. 315–318, 2008. [Online]. Available: https://doi.org/10.1038/nature07112
  373. D. Wang, “Turning a molecule into a coherent two-level quantum system,” Nature Phys., vol. 15, pp. 483–489, May 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0436-5
  374. A. Pscherer, “Single-molecule vacuum Rabi splitting: Four-wave mixing and optical switching at the single-photon level,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.133603
  375. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186
  376. C. T. Nguyen, “Quantum network nodes based on diamond qubits with an efficient nanophotonic interface,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.183602
  377. S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A, vol. 71, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.71.060310
  378. L. Orphal-Kobin, “Optically coherent nitrogen-vacancy defect centers in diamond nanostructures,” 2022, arXiv:2203.05605. [Online]. Available: https://doi.org/10.48550/arXiv.2203.05605
  379. A. Tchebotareva, “Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength,” Phys. Rev. Lett., vol. 123, no. 6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.063601
  380. V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3
  381. Y. Yu, “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, no. 7794, pp. 240–245, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-1976-7
  382. S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0
  383. P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14
  384. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281
  385. A. Bienfait, “Phonon-mediated quantum state transfer and remote qubit entanglement,” Science, vol. 364, no. 6438, pp. 368–371, 2019. [Online]. Available: https://doi.org/10.1126/science.aaw8415
  386. I. Yeo, “Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system,” Nature Nanotechnol., vol. 9, no. 2, pp. 106–110, 2014. [Online]. Available: https://doi.org/10.1038/nnano.2013.274
  387. M. Munsch, “Resonant driving of a single photon emitter embedded in a mechanical oscillator,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-017-00097-3
  388. R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825
  389. E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602
  390. D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060
  391. S. Maity, “Coherent acoustic control of a single silicon vacancy spin in diamond,” Nature Commun., vol. 11, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-019-13822-x
  392. S. J. Whiteley, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nature Phys., vol. 15, no. 5, pp. 490–495, 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0420-0
  393. O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070
  394. B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603
  395. J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503
  396. S. Meesala, “Enhanced strain coupling of nitrogen-vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl., vol. 5, no. 3, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.034010
  397. P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429
  398. J. Chan, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011. [Online]. Available: http://www.nature.com/doifinder/10.1038/nature10461
  399. M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999
  400. P. K. Shandilya, “Hexagonal boron nitride cavity optomechanics,” Nano Lett., vol. 19, no. 2, pp. 1343–1350, 2019. [Online]. Available: https://doi.org/10.1021/acs.nanolett.8b04956
  401. A. Das, “Demonstration of hybrid high-Q hexagonal boron nitride microresonators,” ACS Photon., vol. 8, no. 10, pp. 3027–3033, 2021.
  402. S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications,” J. Physics: Photon., vol. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/2515-7647/ab77a2
  403. X. Yan, “Silicon photonic quantum computing with spin qubits,” APL Photon., vol. 6, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0049372
  404. Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502
  405. M. J. Degen, “Entanglement of dark electron-nuclear spin defects in diamond,” Nature Commun., vol. 12, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-021-23454-9
  406. T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4
  407. M.-A. Lemonde, “Phonon networks with silicon-vacancy centers in diamond waveguides,” Phys. Rev. Lett., vol. 120, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.213603
  408. A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066
  409. S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7
  410. P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494
  411. G. Lin, “Dependence of quality factor on surface roughness in crystalline whispering-gallery mode resonators,” Opt. Lett., vol. 43, no. 3, pp. 495–498, 2018. [Online]. Available: https://doi.org/10.1364/OL.43.000495
  412. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378
  413. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515
  414. H. A. Atikian, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4869574
  415. C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826
  416. L. E. Ocola and A. Stein, “Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness,” J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct., vol. 24, no. 6, pp. 3061–3065, 2006. [Online]. Available: https://doi.org/10.1116/1.2366698
  417. K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.
  418. L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501
  419. H. A. Atikian, “Freestanding nanostructures via reactive ion beam angled etching,” APL Photon., vol. 2, no. 5, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4982603
  420. M. J. Burek, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett., vol. 12, no. 12, pp. 6084–6089, 2012. [Online]. Available: https://doi.org/10.1021/nl302541e
  421. F. C. Waldermann, “Creating diamond color centers for quantum optical applications,” Diamond Related Mater., vol. 16, pp. 1887–1895, 2007. [Online]. Available: https://doi.org/10.1016/j.diamond.2007.09.009
  422. S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024
  423. J. O. Orwa, “Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing,” J. Appl. Phys., vol. 109, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573768
  424. J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196
  425. B. Naydenov, “Increasing the coherence time of single electron spins in diamond by high temperature annealing,” Appl. Phys. Lett., vol. 97, no. 24, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3527975
  426. K. Ohno, “Engineering shallow spins in diamond with nitrogen delta-doping,” Appl. Phys. Lett., vol. 101, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4748280
  427. I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater., vol. 2, pp. 911–928, 2014. [Online]. Available: http://doi.org/10.1002/adom.201400189
  428. S. A. Meynell, “Engineering quantum-coherent defects: The role of substrate miscut in chemical vapor deposition diamond growth,” Appl. Phys. Lett., vol. 117, no. 19, 2020, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0029715
  429. A. Bolshakov, “Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane,” Physica Status Solidi (a), vol. 212, pp. 2525–2532, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532174
  430. V. Sedov, “SiV color centers in Si-doped isotopically enriched $^{12}\text {C}$ and $^{13}\text {C}$ CVD diamonds,” Physica Status Solidi (a), vol. 214, 2017, Art. no. . [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/pssa.201700198
  431. V. Sedov, “Growth of polycrystalline and single-crystal $\text {CVD}$ diamonds with bright photoluminescence of $\text {Ge-V}$ color centers using germane $\text {GeH}_{4}$ as the dopant source,” Diamond Related Mater., vol. 90, pp. 47–53, 2018. [Online]. Available: https://doi.org/10.1016/j.diamond.2018.10.001
  432. J. Meijer, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett., vol. 87, 2005, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2103389
  433. A. Haque and S. Sumaiya, “An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation,” J. Manuf. Mater. Process., vol. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.3390/jmmp1010006
  434. C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005
  435. R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010
  436. T. Iwasaki, “Germanium-vacancy single color centers in diamond,” Sci. Rep., vol. 5, no. 1, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/srep12882
  437. S. D. Tchernij, “Single-photon-emitting optical centers in diamond fabricated upon sn implantation,” ACS Photon., vol. 4, no. 10, pp. 2580–2586, 2017. [Online]. Available: http://doi.org/10.1021/acsphotonics.7b00904
  438. J. Görlitz, “Spectroscopic investigations of negatively charged tin-vacancy centres in diamond,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab6631
  439. Y. Narita, “Identical photons from multiple tin-vacancy centers in diamond,” 2022, arXiv:2208.06275. [Online]. Available: https://doi.org/10.48550/arXiv.2208.06275
  440. S. D. Tchernij, “Single-photon emitters in lead-implanted single-crystal diamond,” ACS Photon., vol. 5, pp. 4864–4871, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.8b01013
  441. M. E. Trusheim, “Lead-related quantum emitters in diamond,” Phys. Rev. B, vol. 99, no. 7, 2019, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.99.075430
  442. T. Iwasaki, “Tin-vacancy quantum emitters in diamond,” Phys. Rev. Lett., vol. 119, no. 25, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.253601
  443. A. E. Rugar, “Generation of tin-vacancy centers in diamond via shallow ion implantation and subsequent diamond overgrowth,” Nano Lett., vol. 20, pp. 1614–1619, 2020. [Online]. Available: https://doi.org/10.1021/acs.nanolett.9b04495
  444. S. Pezzagna, “Nanoscale engineering and optical addressing of single spins in diamond,” Small, vol. 6, pp. 2117–2121, 2010. [Online]. Available: https://doi.org/10.1002/smll.201000902
  445. S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971
  446. S. Tamura, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Exp., vol. 7, no. 11, 2014, Art. no. . [Online]. Available: http://doi.org/10.7567/APEX.7.115201
  447. T. Schröder, “Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15376
  448. T. Schröder, “Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation,” Opt. Mater. Exp., vol. 7, May 2017, Art. no. . [Online]. Available: https://doi.org/10.1364/OME.7.001514
  449. Y.-C. Chen, “Laser writing of coherent colour centres in diamond,” Nature Photon., vol. 11, pp. 77–80, 2017. [Online]. Available: http://doi.org/10.1038/nphoton.2016.234
  450. S. M. Eaton, “Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation,” Adv. Quantum Technol., vol. 2, no. 5/6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900006
  451. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305
  452. Y.-C. Chen, “Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield,” Optica, vol. 6, May 2019, Art. no. . [Online]. Available: http://doi.org/10.1364/OPTICA.6.000662
  453. C. J. Stephen, “Deep three-dimensional solid-state qubit arrays with long-lived spin coherence,” Phys. Rev. Appl., vol. 12, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.12.064005
  454. V. Yurgens, “Low-charge-noise nitrogen-vacancy centers in diamond created using laser writing with a solid-immersion lens,” ACS Photon., vol. 8, pp. 1726–1734, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00274
  455. Y. Rong, “Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation,” Opt. Lett., vol. 44, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.44.003793
  456. F. Fávaro de Oliveira, “Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 107, no. 7, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4929356
  457. B. Ofori-Okai, “Spin properties of very shallow nitrogen vacancy defects in diamond,” Phys. Rev. B, vol. 86, no. 8, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.86.081406
  458. B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602
  459. K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135
  460. F. Fávaro de Oliveira, “Tailoring spin defects in diamond by lattice charging,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15409
  461. D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101
  462. S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187
  463. Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263
  464. S. Sangtawesin, “Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031052
  465. T. Staudacher, “Enhancing the spin properties of shallow implanted nitrogen vacancy centers in diamond by epitaxial overgrowth,” Appl. Phys. Lett., vol. 101, no. 21, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4767144
  466. J. Lang, “Long optical coherence times of shallow-implanted, negatively charged silicon vacancy centers in diamond,” Appl. Phys. Lett., vol. 116, no. 6, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/1.5143014
  467. M. V. Hauf, “Chemical control of the charge state of nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 83, no. 8, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.83.081304
  468. B. Grotz, “Charge state manipulation of qubits in diamond,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1729
  469. M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y
  470. T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229
  471. V. Petráková, “Luminescence of nanodiamond driven by atomic functionalization: Towards novel detection principles,” Adv. Funct. Mater., vol. 22, no. 4, pp. 812–819, 2012. [Online]. Available: https://doi.org/10.1002/adfm.201101936
  472. A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735
  473. M. Pfender, “Protecting a diamond quantum memory by charge state control,” Nano Lett., vol. 17, no. 10, pp. 5931–5937, 2017. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b01796
  474. M. V. Hauf, “Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures,” Nano Lett., vol. 14, no. 5, pp. 2359–2364, 2014. [Online]. Available: https://doi.org/10.1021/nl4047619
  475. M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839
  476. S. Cui and E. L. Hu, “Increased negatively charged nitrogen-vacancy centers in fluorinated diamond,” Appl. Phys. Lett., vol. 103, no. 5, 2013, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4817651
  477. C. Osterkamp, “Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF$_{6}$ plasma treatment,” Appl. Phys. Lett., vol. 106, no. 11, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4915305
  478. F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411
  479. A. K. Tiwari, “Calculated electron affinity and stability of halogen-terminated diamond,” Phys. Rev. B, vol. 84, no. 24, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.84.245305
  480. L. Rondin, “Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds,” Phys. Rev. B, vol. 82, no. 11, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.82.115449
  481. R. Tsukahara, “Removing non-size-dependent electron spin decoherence of nanodiamond quantum sensors by aerobic oxidation,” ACS Appl. Nano Mater., vol. 2, no. 6, pp. 3701–3710, 2019. [Online]. Available: http://doi.org/10.1021/acsanm.9b00614
  482. E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H
  483. V. M. Acosta, “Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, May 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.206401
  484. Z. H. Zhang, “Optically detected magnetic resonance in neutral silicon vacancy centers in diamond via bound exciton states,” Phys. Rev. Lett., vol. 125, pp. 1–6, 2020. [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.237402
  485. M. Nguyen, “Photodynamics and quantum efficiency of germanium vacancy color centers in diamond,” Adv. Photon., vol. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1117/1.AP.1.6.066002
  486. M. E. Trusheim, “Transform-limited photons from a coherent tin-vacancy spin in diamond,” Phys. Rev. Lett., vol. 124, no. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.023602
  487. J. E. Fröch, “Versatile direct-writing of dopants in a solid state host through recoil implantation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-020-18749-2
  488. P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840
  489. G. Thiering and A. Gali, “Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond,” Phys. Rev. X, vol. 8, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.8.021063
  490. R. Debroux, “Quantum control of the tin-vacancy spin qubit in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.11.041041
  491. Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8
  492. J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354
  493. M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010
  494. N. Manson and J. Harrison, “Photo-ionization of the nitrogen-vacancy center in diamond,” Diamond Related Mater., vol. 14, no. 10, pp. 1705–1710, 2005. [Online]. Available: https://doi.org/10.1016/j.diamond.2005.06.027
  495. J. O. Orwa, “An upper limit on the lateral vacancy diffusion length in diamond,” Diam. Relat. Mater., vol. 24, 2012, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2012.02.009
  496. Y.-I. Sohn, “Controlling the coherence of a diamond spin qubit through its strain environment,” Nature Commun., vol. 9, no. 1, 2018, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-018-04340-3
  497. A. Stolk, “Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers,” PRX Quantum, vol. 3, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.3.020359
  498. A. Reiserer, “Robust quantum-network memory using decoherence-protected subspaces of nuclear spins,” Phys. Rev. X, vol. 6, no. 2, 2016, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.6.021040
  499. N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330
  500. O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214
  501. D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242
  502. D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081
  503. B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234
  504. D. Levonian, “Optical entanglement of distinguishable quantum emitters,” Phys. Rev. Lett., vol. 128, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.128.213602
  505. H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888
  506. T. Unden, “Quantum metrology enhanced by repetitive quantum error correction,” Phys. Rev. Lett., vol. 116, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.230502
  507. M. Kianinia and I. Aharonovich, “Diamond photonics is scaling up,” Nature Photon., vol. 14, pp. 599–600, 2020. [Online]. Available: https://doi.org/10.1038/s41566-020-0695-9
  508. M. Challier, “Advanced fabrication of single-crystal diamond membranes for quantum technologies,” Micromachines, vol. 9, 2018, Art. no. . [Online]. Available: https://doi.org/10.3390/mi9040148
  509. M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462
  510. R. Nelz, “Toward wafer-scale diamond nano- and quantum technologies,” APL Mater., vol. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5067267
  511. H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720

2022 (40)

L. S. Madsen, “Quantum computational advantage with a programmable photonic processor,” Nature, vol. 606, pp. 75–81, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04725-x

T. van Leent, “Entangling single atoms over 33 km telecom fibre,” Nature, vol. 607, no. 7917, pp. 69–73, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04764-4

M. H. Abobeih, “Fault-tolerant operation of a logical qubit in a diamond quantum processor,” Nature, vol. 606, pp. 884–889, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04819-6

M. Pompili, “Experimental demonstration of entanglement delivery using a quantum network stack,” NPJ Quantum Inf., vol. 8, 2022, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-022-00631-2

P.-J. Stas, “Robust multi-qubit quantum network node with integrated error detection,” 2022, arXiv:2207.13128. [Online]. Available: https://doi.org/10.48550/arXiv.2207.13128

S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y

D. Bluvstein, “A quantum processor based on coherent transport of entangled atom arrays,” Nature, vol. 604, pp. 451–456, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04592-6

T. M. Graham, “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer,” Nature, vol. 604, pp. 457–462, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04603-6

P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5

S. Krinner, “Realizing repeated quantum error correction in a distance-three surface code,” Nature, vol. 605, no. 7911, pp. 669–674, 2022. [Online]. Available: http://doi.org/10.1038/s41586-022-04566-8

L. Zhai, “Quantum interference of identical photons from remote GaAs quantum dots,” Nature Nanotechnol., vol. 17, pp. 829–833, 2022. [Online]. Available: https://doi.org/10.1038/s41565-022-01131-2

C. Babin, “Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence,” Nature Mater., vol. 21, no. 1, pp. 67–73, 2022. [Online]. Available: https://doi.org/10.1038/s41563-021-01148-3

D. M. Lukin, “Optical superradiance of a pair of color centers in an integrated silicon-carbide-on-insulator microresonator,” 2022, arXiv:2202.04845. [Online]. Available: https://doi.org/10.48550/arXiv.2202.04845

H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999

E. N. Knall, “Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System,” Phys. Rev. Lett., vol. 129, no. 5, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.129.053603

Z.-H. Zhang, “Neutral silicon vacancy centers in undoped diamond via surface control,” 2022, arXiv:2206.13698. [Online]. Available: http://arxiv.org/abs/2206.13698

P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548

A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819

D. Chen, “Quantum interference of resonance fluorescence from Germanium-vacancy color centers in diamond,” Nano Lett., vol. 22, no. 15, pp. 6306–6312, 2022. [Online]. Available: https://doi.org/10.1021/acs.nanolett.2c01959

J. Arjona Martínez, “Photonic indistinguishability of the tin-vacancy center in nanostructured diamond,” 2022, arXiv:2206.15239. [Online]. Available: https://doi.org/10.48550/arXiv.2206.15239

S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577

K. C. Wong, “Microscopic study of optically stable coherent color centers in diamond generated by high-temperature annealing,” Phys. Rev. Appl., vol. 18, no. 2, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.18.024044

B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362

S. Flågan, P. Maletinsky, R. J. Warburton, and D. Riedel, “Microcavity platform for widely-tunable optical double resonance,” Optica, vol. 9, pp. 1197–1209, 2022. [Online]. Available: https://doi.org/10.1364/OPTICA.466003

K. Arai, “Millimetre-scale magnetocardiography of living rats with thoracotomy,” Commun. Phys., vol. 5, no. 1, pp. 1–10, 2022. [Online]. Available: https://doi.org/10.1038/s42005-022-00978-0

Z. Zhao, “Sub-nanotesla sensitivity at the nanoscale with a single spin,” 2022, arXiv:2205.04415. [Online]. Available: https://doi.org/10.48550/arXiv.2205.04415

H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002

L. Orphal-Kobin, “Optically coherent nitrogen-vacancy defect centers in diamond nanostructures,” 2022, arXiv:2203.05605. [Online]. Available: https://doi.org/10.48550/arXiv.2203.05605

S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0

A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066

C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826

Y. Narita, “Identical photons from multiple tin-vacancy centers in diamond,” 2022, arXiv:2208.06275. [Online]. Available: https://doi.org/10.48550/arXiv.2208.06275

E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H

Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8

J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354

A. Stolk, “Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers,” PRX Quantum, vol. 3, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.3.020359

O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214

B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234

D. Levonian, “Optical entanglement of distinguishable quantum emitters,” Phys. Rev. Lett., vol. 128, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.128.213602

H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888

2021 (40)

D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081

R. Debroux, “Quantum control of the tin-vacancy spin qubit in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.11.041041

P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840

V. Yurgens, “Low-charge-noise nitrogen-vacancy centers in diamond created using laser writing with a solid-immersion lens,” ACS Photon., vol. 8, pp. 1726–1734, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00274

S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7

M. J. Degen, “Entanglement of dark electron-nuclear spin defects in diamond,” Nature Commun., vol. 12, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-021-23454-9

T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4

A. Das, “Demonstration of hybrid high-Q hexagonal boron nitride microresonators,” ACS Photon., vol. 8, no. 10, pp. 3027–3033, 2021.

X. Yan, “Silicon photonic quantum computing with spin qubits,” APL Photon., vol. 6, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0049372

A. Pscherer, “Single-molecule vacuum Rabi splitting: Four-wave mixing and optical switching at the single-photon level,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.133603

M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314

E. R. Eisenach, “Cavity-enhanced microwave readout of a solid-state spin sensor,” Nature Commun., vol. 12, no. 1, pp. 1–7, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-21256-7

A. M. Edmonds, “Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications,” Mater. Quantum Technol., vol. 1, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/0.1088/2633-4356/abd88a

B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535

M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed

N. Tomm, “A bright and fast source of coherent single photons,” Nature Nanotechnol., vol. 16, pp. 399–403, 2021. [Online]. Available: http://doi.org/10.1038/s41565-020-00831-x

K. O. Ho, “Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy ($\text {NV})$ center in diamond,” J. Appl. Phys., vol. 129, no. 24, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0052233

V. V. Soshenko, “Nuclear spin gyroscope based on the nitrogen vacancy center in diamond,” Phys. Rev. Lett., vol. 126, no. 19, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.197702

M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049

K. G. Fehler, “Hybrid quantum photonics based on artificial atoms placed inside one hole of a photonic crystal cavity,” ACS Photon., vol. 8, pp. 2635–2641, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00530

A. E. Rugar, “Quantum photonic interface for tin-vacancy centers in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevX.11.031021

K. Kuruma, “Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond,” Appl. Phys. Lett., vol. 118, no. 23, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0051675

L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601

M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534

B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A

D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w

N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511

N. Hedrich, “Nanoscale mechanics of antiferromagnetic domain walls,” Nature Phys., vol. 17, pp. 574–577, 2021. [Online]. Available: http://doi.org/10.1038/s41567-020-01157-0

A. G. Primo, “Accurate modeling and characterization of photothermal forces in optomechanics,” APL Photon., vol. 6, no. 8, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0055201

S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010

L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402

S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425

P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3

S. Daiss, “A quantum-logic gate between distant quantum-network modules,” Science, vol. 371, no. 6529, pp. 614–617, 2021. [Online]. Available: https://doi.org/10.1126/science.abe3150

M. Pompili, “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, 2021. [Online]. Available: http://doi.org/10.1126/science.abg1919

L. Egan, “Fault-tolerant control of an error-corrected qubit,” Nature, vol. 598, pp. 281–286, 2021. [Online]. Available: https://doi.org/10.1038/s41586-021-03928-y

S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506

S. Langenfeld, “Quantum teleportation between remote qubit memories with only a single photon as a resource,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.130502

G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863

Y. Wu, “Strong quantum computational advantage using a superconducting quantum processor,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.180501

2020 (48)

J. Yin, “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2401-y

H.-S. Zhong, “Quantum computational advantage using photons,” Science, vol. 370, pp. 1460–1463, 2020. [Online]. Available: https://doi.org/10.1126/science.abe8770

L. Stephenson, “High-rate, high-fidelity entanglement of qubits across an elementary quantum network,” Phys. Rev. Lett., vol. 124, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.110501

M. K. Bhaskar, “Experimental demonstration of memory-enhanced quantum communication,” Nature, vol. 580, pp. 60–64, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2103-5

A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z

J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9

D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102

N. T. Son, “Developing silicon carbide for quantum spintronics,” Appl. Phys. Lett., vol. 116, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0004454

A. Bourassa, “Entanglement and control of single nuclear spins in isotopically engineered silicon carbide,” Nature Mater., vol. 19, no. 12, pp. 1319–1325, 2020. [Online]. Available: https://doi.org/10.1038/s41563-020-00802-6

G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192

N. Lauk, “Perspectives on quantum transduction,” Quantum Sci. Technol., vol. 5, no. 2, 2020, Art. no. . [Online]. Available: http://doi.org/10.1088/2058-9565/ab788a

Y. Chu and S. Gröblacher, “A perspective on hybrid quantum opto- and electromechanical systems,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0021088

M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6

Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb

U. Wahl, “Direct structural identification and quantification of the split-vacancy configuration for implanted Sn in diamond,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.045301

J. N. Becker and E. Neu, “The silicon vacancy center in diamond,” vol. 103, pp. 201–235, 2020. [Online]. Available: https://doi.org/10.1016/bs.semsem.2020.04.001

G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075

A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601

A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z

H. Wang and I. Lekavicius, “Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0024001

N. H. Wan, “Large-scale integration of artificial atoms in hybrid photonic circuits,” Nature, vol. 583, pp. 226–231, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2441-3

S. Chakravarthi, “Inverse-designed photon extractors for optically addressable defect qubits,” Optica, vol. 7, no. 12, pp. 1805–1811, 2020 . [Online]. Available: https://doi.org/10.1364/OPTICA.408611

M. Forsch, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nature Phys., vol. 16, no. 1, pp. 69–74, 2020. [Online]. Available: https://doi.org/10.1038/s41567-019-0673-7

D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x

D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036

N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007

A. E. Rugar, “Narrow-linewidth tin-vacancy centers in a diamond waveguide,” ACS Photon., vol. 7, pp. 2356–2361, 2020. [Online]. Available: https://doi.org/10.1021/acsphotonics.0c00833

M. Kasperczyk, “Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures,” Phys. Rev. B, vol. 102, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.102.075312

R. Høy Jensen, “Cavity-enhanced photon emission from a single germanium-vacancy center in a diamond membrane,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.064016

J. F. Barry, “Sensitivity optimization for NV-diamond magnetometry,” Rev. Mod. Phys., vol. 92, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.92.015004

D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036

J. L. Webb, “Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals,” Front. Phys., vol. 8, 2020, Art. no. . [Online]. Available: https://doi.org/10.3389/fphy.2020.522536

I. Bertelli, “Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator,” Sci. Adv., vol. 6, 2020, Art. no. . [Online]. Available: https://www.science.org/doi/10.1126/sciadv.abd3556

G. S. MacCabe, “Nano-acoustic resonator with ultralong phonon lifetime,” Science, vol. 370, no. 6518, pp. 840–843, 2020. [Online]. Available: https://doi.org/10.1126/science.abc7312

P. Magnard, “Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.260502

Y. Yu, “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, no. 7794, pp. 240–245, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-1976-7

S. Maity, “Coherent acoustic control of a single silicon vacancy spin in diamond,” Nature Commun., vol. 11, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-019-13822-x

S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications,” J. Physics: Photon., vol. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/2515-7647/ab77a2

S. A. Meynell, “Engineering quantum-coherent defects: The role of substrate miscut in chemical vapor deposition diamond growth,” Appl. Phys. Lett., vol. 117, no. 19, 2020, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0029715

S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187

Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263

J. Lang, “Long optical coherence times of shallow-implanted, negatively charged silicon vacancy centers in diamond,” Appl. Phys. Lett., vol. 116, no. 6, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/1.5143014

J. Görlitz, “Spectroscopic investigations of negatively charged tin-vacancy centres in diamond,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab6631

A. E. Rugar, “Generation of tin-vacancy centers in diamond via shallow ion implantation and subsequent diamond overgrowth,” Nano Lett., vol. 20, pp. 1614–1619, 2020. [Online]. Available: https://doi.org/10.1021/acs.nanolett.9b04495

M. E. Trusheim, “Transform-limited photons from a coherent tin-vacancy spin in diamond,” Phys. Rev. Lett., vol. 124, no. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.023602

J. E. Fröch, “Versatile direct-writing of dopants in a solid state host through recoil implantation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-020-18749-2

Z. H. Zhang, “Optically detected magnetic resonance in neutral silicon vacancy centers in diamond via bound exciton states,” Phys. Rev. Lett., vol. 125, pp. 1–6, 2020. [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.237402

M. Kianinia and I. Aharonovich, “Diamond photonics is scaling up,” Nature Photon., vol. 14, pp. 599–600, 2020. [Online]. Available: https://doi.org/10.1038/s41566-020-0695-9

2019 (46)

R. Nelz, “Toward wafer-scale diamond nano- and quantum technologies,” APL Mater., vol. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5067267

M. Nguyen, “Photodynamics and quantum efficiency of germanium vacancy color centers in diamond,” Adv. Photon., vol. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1117/1.AP.1.6.066002

M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010

R. Tsukahara, “Removing non-size-dependent electron spin decoherence of nanodiamond quantum sensors by aerobic oxidation,” ACS Appl. Nano Mater., vol. 2, no. 6, pp. 3701–3710, 2019. [Online]. Available: http://doi.org/10.1021/acsanm.9b00614

S. M. Eaton, “Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation,” Adv. Quantum Technol., vol. 2, no. 5/6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900006

M. E. Trusheim, “Lead-related quantum emitters in diamond,” Phys. Rev. B, vol. 99, no. 7, 2019, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.99.075430

D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101

S. Sangtawesin, “Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031052

Y. Rong, “Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation,” Opt. Lett., vol. 44, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.44.003793

Y.-C. Chen, “Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield,” Optica, vol. 6, May 2019, Art. no. . [Online]. Available: http://doi.org/10.1364/OPTICA.6.000662

C. J. Stephen, “Deep three-dimensional solid-state qubit arrays with long-lived spin coherence,” Phys. Rev. Appl., vol. 12, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.12.064005

J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196

P. K. Shandilya, “Hexagonal boron nitride cavity optomechanics,” Nano Lett., vol. 19, no. 2, pp. 1343–1350, 2019. [Online]. Available: https://doi.org/10.1021/acs.nanolett.8b04956

S. J. Whiteley, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nature Phys., vol. 15, no. 5, pp. 490–495, 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0420-0

R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825

A. Bienfait, “Phonon-mediated quantum state transfer and remote qubit entanglement,” Science, vol. 364, no. 6438, pp. 368–371, 2019. [Online]. Available: https://doi.org/10.1126/science.aaw8415

D. Najer, “A gated quantum dot strongly coupled to an optical microcavity,” Nature, vol. 575, no. 7784, pp. 622–627, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1709-y

B. Machielse, “Quantum interference of electromechanically stabilized emitters in nanophotonic devices,” Phys. Rev. X, vol. 9, no. 3, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031022

D. Wang, “Turning a molecule into a coherent two-level quantum system,” Nature Phys., vol. 15, pp. 483–489, May 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0436-5

A. Tchebotareva, “Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength,” Phys. Rev. Lett., vol. 123, no. 6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.063601

V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3

C. T. Nguyen, “Quantum network nodes based on diamond qubits with an efficient nanophotonic interface,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.183602

L. Thiel, “Probing magnetism in 2D materials at the nanoscale with single-spin microscopy,” Science, vol. 364, pp. 973–976, 2019. [Online]. Available: https://www.science.org/doi/10.1126/science.aav6926

G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386

M. H. Abobeih, “Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor,” Nature, vol. 576, no. 7787, pp. 411–415, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1834-7

S. Häußler, “Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.165310

M. Ruf, “Optically coherent nitrogen-vacancy centers in micrometer-thin etched diamond membranes,” Nano Lett., vol. 19, pp. 3987–3992, 2019. [Online]. Available: http://doi.org/10.1021/acs.nanolett.9b01316

C. T. Nguyen, “An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond,” Phys. Rev. B, vol. 100, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.100.165428

T. Jung, “Spin measurements of NV centers coupled to a photonic crystal cavity,” APL Photon., vol. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5120120

P. Kharel, “High-frequency cavity optomechanics using bulk acoustic phonons,” Sci. Adv., vol. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aav0582

C. Dory, “Inverse-designed diamond photonics,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-11343-1

D. Chen, “Optical gating of resonance fluorescence from a single germanium vacancy color center in diamond,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org10.1103/PhysRevLett.123.033602

S. B. van Dam, “Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.161203

M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832

M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122

A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102

J. V. Cady, “Diamond optomechanical crystals with embedded nitrogen-vacancy centers,” Quantum Sci. Technol., vol. 4, no. 2, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/ab043e

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213

Á. Gali, “Ab initio theory of the nitrogen-vacancy center in diamond,” Nanophotonics, vol. 8, pp. 1907–1943, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0154

J. Kölbl, “Initialization of single spin dressed states using shortcuts to adiabaticity,” Phys. Rev. Lett., vol. 122, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.090502

M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217

J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091

C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w

C. E. Bradley, “A ten-qubit solid-state spin register with quantum memory up to one minute,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031045

C. P. Anderson, “Electrical and optical control of single spins integrated in scalable semiconductor devices,” Science, vol. 366, pp. 1225–1230, 2019. [Online]. Available: https://doi.org/doi/10.1126/science.aax9406

F. Arute, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, 2019. [Online]. Available: http://doi.org/10.1038/s41586-019-1666-5

2018 (40)

S.-K. Liao, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.120.030501

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601

R. E. Evans, “Photon-mediated interactions between quantum emitters in a diamond nanocavity,” Science, vol. 362, pp. 662–665, 2018. [Online]. Available: https://doi.org/10.1126/science.aau4691

P. C. Humphreys, “Deterministic delivery of remote entanglement on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273, 2018. [Online]. Available: http://doi.org/10.1038/s41586-018-0200-5

L. Fan, “Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv., vol. 4, 2018, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aar4994

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031

P. R. Dolan, “Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity,” Opt. Exp., vol. 26, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.26.007056

M. H. Abobeih, “One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment,” Nature Commun., vol. 9, 2018, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-018-04916-z

B. C. Rose, “Observation of an environmentally insensitive solid-state spin defect in diamond,” Science, vol. 361, pp. 60–63, 2018. [Online]. Available: https://www.doi.org/10.1126/science.aao0290

S. Meesala, “Strain engineering of the silicon-vacancy center in diamond,” Phys. Rev. B, vol. 97, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.97.205444

J. N. Becker, “All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.053603

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318

D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516

C. Huang, “Anisotropy effects in diamond under nanoindentation,” Carbon, vol. 132, pp. 606–615, 2018. [Online]. Available: https://doi.org/10.1016/j.carbon.2018.02.066

N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316

L. Marseglia, “Bright nanowire single photon source based on SiV centers in diamond,” Opt. Exp., vol. 26, no. 1, pp. 80–89, 2018. [Online]. Available: https://doi.org/10.1364/OE.26.000080

S. Sun, “Cavity-enhanced Raman emission from a single color center in a solid,” Phys. Rev. Lett., vol. 121, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.121.083601

J. P. Hadden, “Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.43.003586

F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88

H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216

J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044

E. Boto, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, vol. 555, no. 7698, pp. 657–661, 2018. [Online]. Available: https://doi.org/10.1038/nature26147

P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640

B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303

J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb

D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781

J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0

E. R. Schmidgall, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett., vol. 18, pp. 1175–1179, 2018. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b04717

G. Lin, “Dependence of quality factor on surface roughness in crystalline whispering-gallery mode resonators,” Opt. Lett., vol. 43, no. 3, pp. 495–498, 2018. [Online]. Available: https://doi.org/10.1364/OL.43.000495

L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501

M.-A. Lemonde, “Phonon networks with silicon-vacancy centers in diamond waveguides,” Phys. Rev. Lett., vol. 120, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.213603

V. Sedov, “Growth of polycrystalline and single-crystal $\text {CVD}$ diamonds with bright photoluminescence of $\text {Ge-V}$ color centers using germane $\text {GeH}_{4}$ as the dopant source,” Diamond Related Mater., vol. 90, pp. 47–53, 2018. [Online]. Available: https://doi.org/10.1016/j.diamond.2018.10.001

S. D. Tchernij, “Single-photon emitters in lead-implanted single-crystal diamond,” ACS Photon., vol. 5, pp. 4864–4871, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.8b01013

Y.-I. Sohn, “Controlling the coherence of a diamond spin qubit through its strain environment,” Nature Commun., vol. 9, no. 1, 2018, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-018-04340-3

G. Thiering and A. Gali, “Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond,” Phys. Rev. X, vol. 8, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.8.021063

M. Challier, “Advanced fabrication of single-crystal diamond membranes for quantum technologies,” Micromachines, vol. 9, 2018, Art. no. . [Online]. Available: https://doi.org/10.3390/mi9040148

N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330

2017 (42)

M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462

M. Pfender, “Protecting a diamond quantum memory by charge state control,” Nano Lett., vol. 17, no. 10, pp. 5931–5937, 2017. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b01796

T. Iwasaki, “Tin-vacancy quantum emitters in diamond,” Phys. Rev. Lett., vol. 119, no. 25, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.253601

S. D. Tchernij, “Single-photon-emitting optical centers in diamond fabricated upon sn implantation,” ACS Photon., vol. 4, no. 10, pp. 2580–2586, 2017. [Online]. Available: http://doi.org/10.1021/acsphotonics.7b00904

T. Schröder, “Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15376

T. Schröder, “Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation,” Opt. Mater. Exp., vol. 7, May 2017, Art. no. . [Online]. Available: https://doi.org/10.1364/OME.7.001514

Y.-C. Chen, “Laser writing of coherent colour centres in diamond,” Nature Photon., vol. 11, pp. 77–80, 2017. [Online]. Available: http://doi.org/10.1038/nphoton.2016.234

F. Fávaro de Oliveira, “Tailoring spin defects in diamond by lattice charging,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15409

A. Haque and S. Sumaiya, “An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation,” J. Manuf. Mater. Process., vol. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.3390/jmmp1010006

V. Sedov, “SiV color centers in Si-doped isotopically enriched $^{12}\text {C}$ and $^{13}\text {C}$ CVD diamonds,” Physica Status Solidi (a), vol. 214, 2017, Art. no. . [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/pssa.201700198

H. A. Atikian, “Freestanding nanostructures via reactive ion beam angled etching,” APL Photon., vol. 2, no. 5, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4982603

D. Kikuchi, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Exp., vol. 10, 2017, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.7567/APEX.10.103004

P. Andrich, “Long-range spin wave mediated control of defect qubits in nanodiamonds,” NPJ Quantum Inf., vol. 3, 2017, Art. no. . [Online]. Available: https://www.nature.com/articles/s41534-017-0029-z

S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photon., vol. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4978204

M. Munsch, “Resonant driving of a single photon emitter embedded in a mechanical oscillator,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-017-00097-3

D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458

N. Aslam, “Nanoscale nuclear magnetic resonance with chemical resolution,” Science, vol. 357, no. 6346, pp. 67–71, 2017. [Online]. Available: https://doi.org/10.1126/science.aam8697

S. Schmitt, “Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor,” Science, vol. 356, no. 6340, pp. 832–837, 2017. [Online]. Available: https://doi.org/10.1126/science.aam5532

J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009

M. Wu, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nature Nanotechnol., vol. 12, no. 2, pp. 127–131, 2017. [Online]. Available: https://doi.org/10.1038/nnano.2016.226

G. Chatzidrosos, “Miniature cavity-enhanced diamond magnetometer,” Phys. Rev. Appl., vol. 8, no. 4, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.044019

M. Bhaskar, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett., vol. 118, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.118.223603

J. Benedikter, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl., vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.7.024031

P. Siyushev, “Optical and microwave control of germanium-vacancy center spins in diamond,” Phys. Rev. B, vol. 96, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.96.081201

M. J. Weaver, “Coherent optomechanical state transfer between disparate mechanical resonators,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-017-00968-9

M. C. Kuzyk and H. Wang, “Controlling multimode optomechanical interactions via interference,” Phys. Rev. A, vol. 96, no. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.96.023860

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114

F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508

M. J. Burek, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl., vol. 8, pp. 1–10, 2017. [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.024026

S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118

Y. Okawachi, “Competition between Raman and Kerr effects in microresonator comb generation,” Opt. Lett., vol. 42, no. 14, pp. 2786–2789, 2017. [Online]. Available: https://doi.org/10.1364/OL.42.002786

J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4

B. Pingault, “Coherent control of the silicon-vacancy spin in diamond,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15579

D. Sukachev, “Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett., vol. 119, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.223602

D. Riedel, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X, vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.7.031040

E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358

S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003

D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd

N. Kalb, “Entanglement distillation between solid-state quantum network nodes,” Science, vol. 356, no. 6341, pp. 928–932, 2017. [Online]. Available: http://doi.org/10.1126/science.aan0070

R. Stockill, “Phase-tuned entangled state generation between distant spin qubits,” Phys. Rev. Lett., vol. 119, 2017, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.119.010503

T. Zhong, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science, vol. 357, no. 6358, pp. 1392–1395, 2017. [Online]. Available: https://doi.org/10.1126/science.aan5959

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002

2016 (28)

P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176

R. Valivarthi, “Quantum teleportation across a metropolitan fibre network,” Nature Photon., vol. 10, pp. 676–680, 2016. [Online]. Available: http://doi.org/10.1038/nphoton.2016.180

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, no. 9, pp. 963–970, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.000963

M. J. Burek, “Diamond optomechanical crystals,” Optica, vol. 3, no. 12, pp. 1404–1411, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.001404

J. Cramer, “Repeated quantum error correction on a continuously encoded qubit by real-time feedback,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms11526

A. Sipahigil, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science, vol. 354, pp. 847–850, 2016. [Online]. Available: https://doi.org/10.1126/science.aah6875

I. P. Radko, “Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond,” Opt. Exp., vol. 24, 2016, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.24.027715

J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512

T. Schröder, “Quantum nanophotonics in diamond [Invited],” J. Opt. Soc. Amer. B, vol. 33, no. 4, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B65

C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401

A. Pontin, “Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system,” Phys. Rev. Lett., vol. 116, no. 10, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.103601

H. Kaupp, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.054010

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001

M. Gould, “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. America B, vol. 33, no. 3, pp. B35–B42, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B35

J. L. Zhang, “Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers,” Nano Lett., vol. 16, no. 1, pp. 212–217, 2016. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b03515

P. Appel, “Fabrication of all diamond scanning probes for nanoscale magnetometry,” Rev. Sci. Instrum., vol. 87, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4952953

R. Körber, “SQUIDS in biomagnetism: A roadmap towards improved healthcare,” Supercond. Sci. Technol., vol. 29, no. 11, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/0953-2048/29/11/113001

J. F. Barry, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Nat. Acad. Sci., vol. 113, no. 49, pp. 14133–14138, 2016. [Online]. Available: https://doi.org/10.1073/pnas.1601513113

M. E. Trusheim and D. Englund, “Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond,” New J. Phys., vol. 18, no. 12, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/aa5040

S. Meesala, “Enhanced strain coupling of nitrogen-vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl., vol. 5, no. 3, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.034010

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010

A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242

A. Reiserer, “Robust quantum-network memory using decoherence-protected subspaces of nuclear spins,” Phys. Rev. X, vol. 6, no. 2, 2016, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.6.021040

T. Unden, “Quantum metrology enhanced by repetitive quantum error correction,” Phys. Rev. Lett., vol. 116, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.230502

2015 (33)

C. Osterkamp, “Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF$_{6}$ plasma treatment,” Appl. Phys. Lett., vol. 106, no. 11, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4915305

T. Iwasaki, “Germanium-vacancy single color centers in diamond,” Sci. Rep., vol. 5, no. 1, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/srep12882

F. Fávaro de Oliveira, “Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 107, no. 7, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4929356

B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603

P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494

A. Bolshakov, “Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane,” Physica Status Solidi (a), vol. 212, pp. 2525–2532, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532174

D. Rugar, “Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor,” Nature Nanotechnol., vol. 10, pp. 120–124, 2015. [Online]. Available: http://doi.org/10.1038/nnano.2014.288

T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299

S. L. Mouradian, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.031009

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844

T. Wolf, “Subpicotesla diamond magnetometry,” Phys. Rev. X, vol. 5, no. 4, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041001

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58

L. Li, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms7173

S. Johnson, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys., vol. 17, 2015, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/17/12/122003

L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902

S. A. Momenzadeh, “Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers,” Nano Lett., vol. 15, pp. 165–169, 2015. [Online]. Available: https://doi.org/10.1021/nl503326t

A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411

Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801

J. D. Cohen, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature, vol. 520, no. 7548, pp. 522–525, 2015. [Online]. Available: https://doi.org/10.1038/nature14349

M. Kasperczyk, A. Jorio, E. Neu, P. Maletinsky, and L. Novotny, “Stokes–anti-stokes correlations in diamond,” Opt. Lett., vol. 40, no. 10, pp. 2393–2396, 2015. [Online]. Available: https://doi.org/10.1364/OL.40.002393

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002

P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica, vol. 2, no. 11, pp. 924–928, 2015. [Online]. Available: https://doi.org/10.1364/OPTICA.2.000924

B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346

J. Riedrich-Möller, “Nanoimplantation and purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett., vol. 106, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4922117

K. D. Jahnke, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys., vol. 17, no. 4, 2015, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/17/4/043011

I. Bayn, “Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks,” Nano Lett., vol. 15, pp. 1751–1758, 2015. [Online]. Available: https://doi.org/10.1021/nl504441m

X. Rong, “Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions,” Nature Commun., vol. 6, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms9748

B. Hensen, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–686, 2015. [Online]. Available: http://doi.org/10.1038/nature15759

M. Zhong, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature, vol. 517, no. 7533, pp. 177–180, 2015. [Online]. Available: http://doi.org/10.1038/nature14025

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Modern Phys., vol. 87, pp. 1379–1418, 2015. [Online]. Available: https://doi.org/10.1103/RevModPhys.87.1379

W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266

2014 (49)

P. Kómár, “A quantum network of clocks,” Nature Phys., vol. 10, no. 8, pp. 582–587, 2014. [Online]. Available: http://doi.org/10.1038/nphys3000

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nature Photon., vol. 8, pp. 356–363, May 2014. [Online]. Available: http://doi.org/10.1038/nphoton.2014.53

W. Pfaff, “Unconditional quantum teleportation between distant solid-state quantum bits,” Science, vol. 345, no. 6196, pp. 532–535, 2014. [Online]. Available: https://doi.org/10.1126/science.1253512

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549

A. Dietrich, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys., vol. 16, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/16/11/113019

L. Rogers, “Multiple intrinsically identical single-photon emitters in the solid state,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms5739

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503

G. Waldherr, “Quantum error correction in a solid-state hybrid spin register,” Nature, vol. 506, pp. 204–207, 2014. [Online]. Available: http://doi.org/10.1038/nature12919

C. Hepp, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett., vol. 112, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.036405

I. Bayn, “Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks,” Appl. Phys. Lett., vol. 105, no. 21, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4902562

M. J. Burek, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6718

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638

P. Rath, “Diamond electro-optomechanical resonators integrated in nanophotonic circuits,” Appl. Phys. Lett., vol. 105, no. 25, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4901105

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72

C.-H. Lu, “Generation of octave-spanning supercontinuum by Raman-assisted four-wave mixing in single-crystal diamond,” Opt. Exp., vol. 22, no. 4, pp. 4075–4082, 2014. [Online]. Available: https://doi.org/10.1364/OE.22.004075

O. Lux, “Multi-octave frequency comb generation by $\chi$ (3)-nonlinear optical processes in CVD diamond at low temperatures,” Laser Phys. Lett., vol. 11, no. 8, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1612-2011/11/8/086101

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica, vol. 1, no. 6, pp. 414–420, 2014. [Online]. Available: https://doi.org/10.1364/OPTICA.1.000414

L. J. Rogers, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.263602

A. Sipahigil, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.113602

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391

E. Neu, “Photonic nano-structures on (111)-oriented diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4871580

X.-L. Chu, “Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter,” Optica, vol. 1, no. 4, pp. 203–208, 2014. [Online]. Available: http://doi.org/10.1364/OPTICA.1.000203

D. Riedel, “Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond,” Phys. Rev. Appl., vol. 2, 2014, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.2.064011

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818

C. Dong, J. Zhang, V. Fiore, and H. Wang, “Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes,” Optica, vol. 1, no. 6, pp. 425–428, 2014. [Online]. Available: https://doi.org/10.1364/OPTICA.1.000425

J. Riedrich-Möller, “Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond,” Nano Lett., vol. 14, no. 9, pp. 5281–5287, 2014. [Online]. Available: http://doi.org/10.1021/nl502327b

M. Wu, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.4.021052

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659

L. Greuter, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4896415

Y. Chu, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett., vol. 14, pp. 1982–1986, 2014. [Online]. Available:https://doi.org/10.1021/nl404836p

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.

F. Dolde, “Nanoscale detection of a single fundamental charge in ambient conditions using the $\text{NV}^-$ center in diamond,” Phys. Rev. Lett., vol. 112, no. 9, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.097603

M. S. Grinolds, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nature Nanotechnol., vol. 9, pp. 279–284, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.30

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater., vol. 2, pp. 911–928, 2014. [Online]. Available: http://doi.org/10.1002/adom.201400189

H. A. Atikian, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4869574

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429

I. Yeo, “Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system,” Nature Nanotechnol., vol. 9, no. 2, pp. 106–110, 2014. [Online]. Available: https://doi.org/10.1038/nnano.2013.274

P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14

B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602

S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971

S. Tamura, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Exp., vol. 7, no. 11, 2014, Art. no. . [Online]. Available: http://doi.org/10.7567/APEX.7.115201

M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y

T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229

M. V. Hauf, “Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures,” Nano Lett., vol. 14, no. 5, pp. 2359–2364, 2014. [Online]. Available: https://doi.org/10.1021/nl4047619

M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839

H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720

2013 (17)

S. Cui and E. L. Hu, “Increased negatively charged nitrogen-vacancy centers in fluorinated diamond,” Appl. Phys. Lett., vol. 103, no. 5, 2013, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4817651

E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602

P. Neumann, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett., vol. 13, no. 6, pp. 2738–2742, 2013. [Online]. Available: https://doi.org/10.1021/nl401216y

H. J. Mamin, “Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor,” Science, vol. 339, no. 6119, pp. 557–560, 2013. [Online]. Available: https://doi.org/10.1126/science.1231540

T. Staudacher, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)$^{3}$ sample volume,” Science, vol. 339, no. 6119, pp. 561–563, 2013. [Online]. Available: https://doi.org/10.1126/science.1231675

B. J. Hausmann, “Coupling of $\text {NV}$ centers to photonic crystal nanobeams in diamond,” Nano Lett., vol. 13, pp. 5791–5796, 2013. [Online]. Available: https://doi.org/10.1021/nl402174g

A. Faraon, “Quantum photonic devices in single-crystal diamond,” New J. Phys., vol. 15, no. 2, 2013, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/15/2/025010

M. Woolley and A. Clerk, “Two-mode back-action-evading measurements in cavity optomechanics,” Phys. Rev. A, vol. 87, no. 6, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.87.063846

Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603

M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917

P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710

A. Gali and J. R. Maze, “Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties,” Phys. Rev. B, vol. 88, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.88.235205

F. Dolde, “Room-temperature entanglement between single defect spins in diamond,” Nature Phys., vol. 9, no. 3, pp. 139–143, 2013. [Online]. Available: http://doi.org/10.1038/nphys2545

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001

H. Bernien, “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, pp. 86–90, May 2013. [Online]. Available: http://doi.org/10.1038/nature12016

R. J. Warburton, “Single spins in self-assembled quantum dots,” Nature Mater., vol. 12, no. 6, pp. 483–493, 2013. [Online]. Available: https://doi.org/10.1038/nmat3585

M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, pp. 1169–1174, 2013. [Online]. Available: https://doi.org/10.1126/science.1231930

2012 (24)

S. Ritter, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012. [Online]. Available: http://doi.org/10.1038/nature11023

J. Hofmann, “Heralded entanglement between widely separated atoms,” Science, vol. 336, no. 6090, pp. 72–75, 2012. [Online]. Available: https://doi.org/10.1126/science.1221856

P. C. Maurer, “Room-temperature quantum bit memory exceeding one second,” Science, vol. 336, no. 6086, pp. 1283–1286, 2012. [Online]. Available: http://doi.org/10.1126/science.1220513

M. Fuechsle, “A single-atom transistor,” Nature Nanotechnol., vol. 7, pp. 242–246, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.21

T. Ishikawa, “Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer,” Nano Lett., vol. 12, pp. 2083–2087, 2012. [Online]. Available: https://doi.org/10.1021/nl300350r

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604

A. Sipahigil, “Quantum interference of single photons from remote nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.143601

P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604

J. Riedrich-Möller, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nature Nanotechnol., vol. 7, pp. 69–74, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2011.190

P. Maletinsky, “A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres,” Nature Nanotechnol., vol. 7, pp. 320–324, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.50

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201

T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721

K. Ohno, “Engineering shallow spins in diamond with nitrogen delta-doping,” Appl. Phys. Lett., vol. 101, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4748280

M. J. Burek, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett., vol. 12, no. 12, pp. 6084–6089, 2012. [Online]. Available: https://doi.org/10.1021/nl302541e

V. Petráková, “Luminescence of nanodiamond driven by atomic functionalization: Towards novel detection principles,” Adv. Funct. Mater., vol. 22, no. 4, pp. 812–819, 2012. [Online]. Available: https://doi.org/10.1002/adfm.201101936

B. Grotz, “Charge state manipulation of qubits in diamond,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1729

V. M. Acosta, “Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, May 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.206401

J. O. Orwa, “An upper limit on the lateral vacancy diffusion length in diamond,” Diam. Relat. Mater., vol. 24, 2012, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2012.02.009

B. Ofori-Okai, “Spin properties of very shallow nitrogen vacancy defects in diamond,” Phys. Rev. B, vol. 86, no. 8, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.86.081406

T. Staudacher, “Enhancing the spin properties of shallow implanted nitrogen vacancy centers in diamond by epitaxial overgrowth,” Appl. Phys. Lett., vol. 101, no. 21, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4767144

2011 (22)

M. V. Hauf, “Chemical control of the charge state of nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 83, no. 8, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.83.081304

A. K. Tiwari, “Calculated electron affinity and stability of halogen-terminated diamond,” Phys. Rev. B, vol. 84, no. 24, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.84.245305

Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024

J. O. Orwa, “Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing,” J. Appl. Phys., vol. 109, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573768

J. Chan, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011. [Online]. Available: http://www.nature.com/doifinder/10.1038/nature10461

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070

K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023

A. Dréau, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B, vol. 84, no. 19, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.84.195204

L. Marseglia, “Nanofabricated solid immersion lenses registered to single emitters in diamond,” Appl. Phys. Lett., vol. 98, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573870

X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545

K. G. Lee, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photon., vol. 5, pp. 166–169, 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2010.312

P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52

I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018

J. Teufel, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature, vol. 475, no. 7356, pp. 359–363, 2011. [Online]. Available: https://doi.org/10.1038/nature10261

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401

J. R. Maze, “Properties of nitrogen-vacancy centers in diamond: The group theoretic approach,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025025

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013

C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys.: Conf. Ser., vol. 264, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1742-6596/264/1/012025

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501

2010 (16)

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501

E. Togan, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature, vol. 466, no. 7307, pp. 730–734, 2010. [Online]. Available: http://doi.org/10.1038/nature09256

L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Modern Phys., vol. 82, pp. 1209–1224, 2010. [Online]. Available: https://doi.org/10.1103/RevModPhys.82.1209

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236

D. Englund, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett., vol. 10, pp. 3922–3926, 2010. [Online]. Available: https://doi.org/10.1021/nl101662v

T. M. Babinec, “A diamond nanowire single-photon source,” Nature Nanotechnol., vol. 5, pp. 195–199, 2010. [Online]. Available: http://doi.org/10.1038/nnano.2010.6

B. J. Hausmann, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Related Mater., vol. 19, no. 5, pp. 621–629, 2010. [Online]. Available: https://doi.org/10.1016/j.diamond.2010.01.011

J. P. Hadden, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett., vol. 97, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3519847

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801

B. Naydenov, “Increasing the coherence time of single electron spins in diamond by high temperature annealing,” Appl. Phys. Lett., vol. 97, no. 24, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3527975

L. Rondin, “Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds,” Phys. Rev. B, vol. 82, no. 11, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.82.115449

K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135

S. Pezzagna, “Nanoscale engineering and optical addressing of single spins in diamond,” Small, vol. 6, pp. 2117–2121, 2010. [Online]. Available: https://doi.org/10.1002/smll.201000902

2009 (11)

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948

C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106

H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601

H. Pinto and R. Jones, “Theory of the birefringence due to dislocations in single crystal CVD diamond,” J. Physics: Condens. Matter, vol. 21, no. 36, 2009, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0953-8984/21/36/364220

A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524

A. Lang, “The strain-optical constants of diamond: A brief history of measurements,” Diamond Related Mater., vol. 18, no. 1, pp. 1–5, 2009. [Online]. Available: https://doi.org/10.1016/j.diamond.2008.07.020

V. P. Adiga, “Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators,” Phys. Rev. B, vol. 79, no. 24, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.79.245403

J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .

G. Balasubramanian, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mater., vol. 8, no. 5, pp. 383–387, 2009. [Online]. Available: http://doi.org/10.1038/nmat2420

2008 (8)

H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008. [Online]. Available: http://doi.org/10.1038/nature07127

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950

M. Pinard and A. Dantan, “Quantum limits of photothermal and radiation pressure cooling of a movable mirror,” New J. Phys., vol. 10, no. 9, 2008, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/10/9/095012

C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240

J. M. Taylor, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Phys., vol. 4, pp. 810–816, 2008. [Online]. Available: https://doi.org/10.1038/nphys1075

K.-M. C. Fu, “Coupling of nitrogen-vacancy centers in diamond to a gap waveguide,” Appl. Phys. Lett., vol. 93, no. 23, 2008, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3045950

J. M. Fink, “Climbing the jaynes-cummings ladder and observing its $\sqrt{n}$ nonlinearity in a cavity qed system,” Nature, vol. 454, pp. 315–318, 2008. [Online]. Available: https://doi.org/10.1038/nature07112

2007 (5)

F. C. Waldermann, “Creating diamond color centers for quantum optical applications,” Diamond Related Mater., vol. 16, pp. 1887–1895, 2007. [Online]. Available: https://doi.org/10.1016/j.diamond.2007.09.009

N. Gisin and R. Thew, “Quantum communication,” Nature Photon., vol. 1, pp. 165–171, 2007. [Online]. Available: http://doi.org/10.1038/nphoton.2007.22

R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217

D. L. Moehring, “Entanglement of single-atom quantum bits at a distance,” Nature, vol. 449, no. 7158, pp. 68–71, 2007. [Online]. Available: http://doi.org/10.1038/nature06118

M. V. G. Dutt, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science, vol. 316, no. 5829, pp. 1312–1316, 2007. [Online]. Available: http://www.doi.org/10.1126/science.1139831

2006 (9)

L. Childress, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science, vol. 314, pp. 281–285, 2006. [Online]. Available: https://doi.org/10.1126/science.1131871

T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303

M. E. Wandel, “Attenuation in silica-based optical fibers,” Ph.D. dissertation, DTU, 2006. [Online]. Available: https://orbit.dtu.dk/en/publications/attenuation-in-silica-based-optical-fibers

S. L. Vittorio Giovannetti and L. Maccone, “Quantum metrology,” Phys. Rev. Lett., vol. 96, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.96.010401

P. Tamarat, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett., vol. 97, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.97.083002

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299

L. E. Ocola and A. Stein, “Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness,” J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct., vol. 24, no. 6, pp. 3061–3065, 2006. [Online]. Available: https://doi.org/10.1116/1.2366698

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005

2005 (8)

J. Meijer, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett., vol. 87, 2005, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2103389

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515

S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A, vol. 71, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.71.060310

R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291

A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201

N. Manson and J. Harrison, “Photo-ionization of the nitrogen-vacancy center in diamond,” Diamond Related Mater., vol. 14, no. 10, pp. 1705–1710, 2005. [Online]. Available: https://doi.org/10.1016/j.diamond.2005.06.027

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801

M. Povinelli, “Evanescent-wave bonding between optical waveguides,” Opt. Lett., vol. 30, no. 22, 2005, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.30.003042

2004 (5)

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378

2003 (1)

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281

2002 (2)

P. Glover and P. Mansfield, “Limits to magnetic resonance microscopy,” Rep. Prog. Phys., vol. 65, no. 10, 2002, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/65/10/203

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145

2001 (2)

F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305

1995 (1)

D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, pp. 255–261, 1995. [Online]. Available: https://doi.org/10.1126/science.270.5234.255

1994 (1)

K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.

1991 (1)

A. K. Ekert, “Quantum cryptography based on bell's theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, 1991. [Online]. Available: https://doi.org/10.1103/PhysRevLett.67.661

1978 (1)

1972 (1)

D. Cohen, “Magnetoencephalography: Detection of the brain's electrical activity with a superconducting magnetometer,” Science, vol. 175, no. 4022, pp. 664–666, 1972. [Online]. Available: https://doi.org/10.1126/science.175.4022.664

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, 1946, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRev.69.674.2

1922 (1)

W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik, vol. 9, pp. 349–352, 1922. [Online]. Available: http://doi.org/10.1007/BF01326983

Abe, E.

S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187

Abendroth, J. M.

E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H

Abobeih, M. H.

M. H. Abobeih, “Fault-tolerant operation of a logical qubit in a diamond quantum processor,” Nature, vol. 606, pp. 884–889, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04819-6

M. H. Abobeih, “One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment,” Nature Commun., vol. 9, 2018, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-018-04916-z

Abulnaga, A.

D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081

Acosta, V. M.

V. M. Acosta, “Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, May 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.206401

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801

Adiga, V. P.

V. P. Adiga, “Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators,” Phys. Rev. B, vol. 79, no. 24, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.79.245403

Aghaeimeibodi, S.

S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010

Agio, M.

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956

Aharonovich, I.

B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A

M. Kianinia and I. Aharonovich, “Diamond photonics is scaling up,” Nature Photon., vol. 14, pp. 599–600, 2020. [Online]. Available: https://doi.org/10.1038/s41566-020-0695-9

C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater., vol. 2, pp. 911–928, 2014. [Online]. Available: http://doi.org/10.1002/adom.201400189

T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501

Aksyuk, V.

Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603

Alegre, T. M.

N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511

Alegre, T. P. M.

A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601

F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508

Alkemade, P. F. A.

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401

Almeida, J. M.

J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4

Amezcua, M.

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060

An, T.

M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217

Anderson, C. P.

G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192

C. P. Anderson, “Electrical and optical control of single spins integrated in scalable semiconductor devices,” Science, vol. 366, pp. 1225–1230, 2019. [Online]. Available: https://doi.org/doi/10.1126/science.aax9406

Andrich, P.

P. Andrich, “Long-range spin wave mediated control of defect qubits in nanodiamonds,” NPJ Quantum Inf., vol. 3, 2017, Art. no. . [Online]. Available: https://www.nature.com/articles/s41534-017-0029-z

Anetsberger, G.

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236

Appel, P.

P. Appel, “Fabrication of all diamond scanning probes for nanoscale magnetometry,” Rev. Sci. Instrum., vol. 87, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4952953

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503

Aradi, B.

M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y

Arai, K.

K. Arai, “Millimetre-scale magnetocardiography of living rats with thoracotomy,” Commun. Phys., vol. 5, no. 1, pp. 1–10, 2022. [Online]. Available: https://doi.org/10.1038/s42005-022-00978-0

Arcizet, O.

B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070

Arend, C.

J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512

Arjona Martínez, J.

J. Arjona Martínez, “Photonic indistinguishability of the tin-vacancy center in nanostructured diamond,” 2022, arXiv:2206.15239. [Online]. Available: https://doi.org/10.48550/arXiv.2206.15239

Arnault, J.-C.

J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354

Arute, F.

F. Arute, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, 2019. [Online]. Available: http://doi.org/10.1038/s41586-019-1666-5

Aslam, N.

N. Aslam, “Nanoscale nuclear magnetic resonance with chemical resolution,” Science, vol. 357, no. 6346, pp. 67–71, 2017. [Online]. Available: https://doi.org/10.1126/science.aam8697

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391

Atikian, H. A.

H. A. Atikian, “Freestanding nanostructures via reactive ion beam angled etching,” APL Photon., vol. 2, no. 5, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4982603

H. A. Atikian, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4869574

Atkins, Z. J.

S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971

Awschalom, D. D.

M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314

G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2

W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266

B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q

Babin, C.

C. Babin, “Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence,” Nature Mater., vol. 21, no. 1, pp. 67–73, 2022. [Online]. Available: https://doi.org/10.1038/s41563-021-01148-3

Babinec, T. M.

T. M. Babinec, “A diamond nanowire single-photon source,” Nature Nanotechnol., vol. 5, pp. 195–199, 2010. [Online]. Available: http://doi.org/10.1038/nnano.2010.6

Bachtold, A.

A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819

Baets, R.

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213

Baier, S.

S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y

Bakhru, H.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002

Balasubramanian, G.

G. Balasubramanian, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mater., vol. 8, no. 5, pp. 383–387, 2009. [Online]. Available: http://doi.org/10.1038/nmat2420

Balram, K. C.

Barbour, R. J.

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721

Barclay, P.

R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825

K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135

Barclay, P. E.

B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234

D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w

P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3

D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x

G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386

M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122

M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832

D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, no. 9, pp. 963–970, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.000963

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346

B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52

P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007

K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378

P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1

Barfuss, A.

A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102

A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503

Barrett, S. D.

S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A, vol. 71, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.71.060310

Barry, J. F.

J. F. Barry, “Sensitivity optimization for NV-diamond magnetometry,” Rev. Mod. Phys., vol. 92, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.92.015004

J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044

J. F. Barry, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Nat. Acad. Sci., vol. 113, no. 49, pp. 14133–14138, 2016. [Online]. Available: https://doi.org/10.1073/pnas.1601513113

Bartholomew, J. G.

J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9

Barzanjeh, S.

S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0

Batzer, M.

N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007

Bauch, E.

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801

Bayn, I.

I. Bayn, “Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks,” Nano Lett., vol. 15, pp. 1751–1758, 2015. [Online]. Available: https://doi.org/10.1021/nl504441m

I. Bayn, “Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks,” Appl. Phys. Lett., vol. 105, no. 21, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4902562

I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018

Beausoleil, R.

K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604

K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023

P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948

Becher, C.

J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956

Becker, J. N.

J. N. Becker and E. Neu, “The silicon vacancy center in diamond,” vol. 103, pp. 201–235, 2020. [Online]. Available: https://doi.org/10.1016/bs.semsem.2020.04.001

J. N. Becker, “All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.053603

J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512

Behera, B.

P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1

Behjat, P.

P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1

Benedikter, J.

J. Benedikter, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl., vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.7.024031

Benevides, R.

N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511

Benevides, R. S.

F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508

Benjamin, S. C.

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .

Bernien, H.

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58

H. Bernien, “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, pp. 86–90, May 2013. [Online]. Available: http://doi.org/10.1038/nature12016

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013

Bersin, E.

Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8

Bertelli, I.

I. Bertelli, “Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator,” Sci. Adv., vol. 6, 2020, Art. no. . [Online]. Available: https://www.science.org/doi/10.1126/sciadv.abd3556

Beukers, H. K. C.

S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y

Bhaskar, M.

M. Bhaskar, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett., vol. 118, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.118.223603

Bhaskar, M. K.

M. K. Bhaskar, “Experimental demonstration of memory-enhanced quantum communication,” Nature, vol. 580, pp. 60–64, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2103-5

E. Janitz, M. K. Bhaskar, and L. Childress, “Cavity quantum electrodynamics with color centers in diamond,” Optica, vol. 7, no. 10, 2020, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.398628

Bhave, S. A.

E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602

Bienfait, A.

A. Bienfait, “Phonon-mediated quantum state transfer and remote qubit entanglement,” Science, vol. 364, no. 6438, pp. 368–371, 2019. [Online]. Available: https://doi.org/10.1126/science.aaw8415

Birnbaum, K. M.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603

Blais, A.

A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z

Blatt, R.

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nature Photon., vol. 8, pp. 356–363, May 2014. [Online]. Available: http://doi.org/10.1038/nphoton.2014.53

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281

Bloom, B.

H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601

Bluvstein, D.

D. Bluvstein, “A quantum processor based on coherent transport of entangled atom arrays,” Nature, vol. 604, pp. 451–456, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04592-6

D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101

Boca, A.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603

Bolshakov, A.

A. Bolshakov, “Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane,” Physica Status Solidi (a), vol. 212, pp. 2525–2532, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532174

Bonato, C.

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031

Boozer, A. D.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603

Boretti, A.

S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications,” J. Physics: Photon., vol. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/2515-7647/ab77a2

Borregaard, J.

S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y

J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091

Borselli, M.

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378

Boss, J. M.

J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0

J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638

Boto, E.

E. Boto, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, vol. 555, no. 7698, pp. 657–661, 2018. [Online]. Available: https://doi.org/10.1038/nature26147

Bouchard, L.-S.

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801

Bourassa, A.

A. Bourassa, “Entanglement and control of single nuclear spins in isotopically engineered silicon carbide,” Nature Mater., vol. 19, no. 12, pp. 1319–1325, 2020. [Online]. Available: https://doi.org/10.1038/s41563-020-00802-6

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844

Bradac, C.

C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w

Bradley, C. E.

C. E. Bradley, “A ten-qubit solid-state spin register with quantum memory up to one minute,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031045

Braje, D.

H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216

Brataas, A.

A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201

Brescia, R.

M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462

Brisinda, D.

R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305

Brundage, T. O.

S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971

Bucher, D. B.

D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781

Budakian, R.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.

Budker, D.

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801

Bulu, I.

P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica, vol. 2, no. 11, pp. 924–928, 2015. [Online]. Available: https://doi.org/10.1364/OPTICA.2.000924

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72

Burchard, B.

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005

Burek, M. J.

M. J. Burek, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl., vol. 8, pp. 1–10, 2017. [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.024026

M. J. Burek, “Diamond optomechanical crystals,” Optica, vol. 3, no. 12, pp. 1404–1411, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.001404

P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica, vol. 2, no. 11, pp. 924–928, 2015. [Online]. Available: https://doi.org/10.1364/OPTICA.2.000924

M. J. Burek, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6718

M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917

M. J. Burek, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett., vol. 12, no. 12, pp. 6084–6089, 2012. [Online]. Available: https://doi.org/10.1021/nl302541e

Burgwal, R.

A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066

L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601

Burkard, G.

G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026

Busch, T.

B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535

Butler, J. E.

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950

C. Hryciw, A.

M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7

C. Waldermann, F.

F. C. Waldermann, “Creating diamond color centers for quantum optical applications,” Diamond Related Mater., vol. 16, pp. 1887–1895, 2007. [Online]. Available: https://doi.org/10.1016/j.diamond.2007.09.009

Cady, J. V.

J. V. Cady, “Diamond optomechanical crystals with embedded nitrogen-vacancy centers,” Quantum Sci. Technol., vol. 4, no. 2, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/ab043e

D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524

Candido, D. R.

M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314

Cao, Y.

H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002

Cappellaro, P.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002

Cardenas, J.

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902

Carvalho, N. C.

N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511

A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601

P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1

Casola, F.

F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88

Castelletto, S.

S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications,” J. Physics: Photon., vol. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/2515-7647/ab77a2

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501

Chakravarthi, S.

S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425

S. Chakravarthi, “Inverse-designed photon extractors for optically addressable defect qubits,” Optica, vol. 7, no. 12, pp. 1805–1811, 2020 . [Online]. Available: https://doi.org/10.1364/OPTICA.408611

Challier, M.

M. Challier, “Advanced fabrication of single-crystal diamond membranes for quantum technologies,” Micromachines, vol. 9, 2018, Art. no. . [Online]. Available: https://doi.org/10.3390/mi9040148

Chan, J.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201

J. Chan, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011. [Online]. Available: http://www.nature.com/doifinder/10.1038/nature10461

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524

Chang, K.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659

Chatzidrosos, G.

G. Chatzidrosos, “Miniature cavity-enhanced diamond magnetometer,” Phys. Rev. Appl., vol. 8, no. 4, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.044019

Chayahara, A.

H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720

Chen, D.

D. Chen, “Quantum interference of resonance fluorescence from Germanium-vacancy color centers in diamond,” Nano Lett., vol. 22, no. 15, pp. 6306–6312, 2022. [Online]. Available: https://doi.org/10.1021/acs.nanolett.2c01959

D. Chen, “Optical gating of resonance fluorescence from a single germanium vacancy color center in diamond,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org10.1103/PhysRevLett.123.033602

Chen, E. H.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002

Chen, H. Y.

B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362

Chen, K. C.

L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402

Chen, X.-W.

X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545

Chen, Y.

Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb

Chen, Y.-C.

Y.-C. Chen, “Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield,” Optica, vol. 6, May 2019, Art. no. . [Online]. Available: http://doi.org/10.1364/OPTICA.6.000662

Y.-C. Chen, “Laser writing of coherent colour centres in diamond,” Nature Photon., vol. 11, pp. 77–80, 2017. [Online]. Available: http://doi.org/10.1038/nphoton.2016.234

Cheng, Y.

G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075

Cheung, H. F. H.

B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362

Chia, C.

C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826

Childress, L.

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401

L. Childress, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science, vol. 314, pp. 281–285, 2006. [Online]. Available: https://doi.org/10.1126/science.1131871

E. Janitz, M. K. Bhaskar, and L. Childress, “Cavity quantum electrodynamics with color centers in diamond,” Optica, vol. 7, no. 10, 2020, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.398628

Cho, S. U.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993

Choi, H.

M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534

Chou, J.-P.

G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075

M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y

Chu, X.-L.

Chu, Y.

Y. Chu and S. Gröblacher, “A perspective on hybrid quantum opto- and electromechanical systems,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0021088

Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801

Y. Chu, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett., vol. 14, pp. 1982–1986, 2014. [Online]. Available:https://doi.org/10.1021/nl404836p

Clarke, J.

R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655

Clerk, A.

C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401

M. Woolley and A. Clerk, “Two-mode back-action-evading measurements in cavity optomechanics,” Phys. Rev. A, vol. 87, no. 6, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.87.063846

Clevenson, H.

H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216

Cohen, D.

D. Cohen, “Magnetoencephalography: Detection of the brain's electrical activity with a superconducting magnetometer,” Science, vol. 175, no. 4022, pp. 664–666, 1972. [Online]. Available: https://doi.org/10.1126/science.175.4022.664

Cohen, J. D.

J. D. Cohen, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature, vol. 520, no. 7548, pp. 522–525, 2015. [Online]. Available: https://doi.org/10.1038/nature14349

Cramer, J.

J. Cramer, “Repeated quantum error correction on a continuously encoded qubit by real-time feedback,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms11526

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2

Cui, S.

S. Cui and E. L. Hu, “Increased negatively charged nitrogen-vacancy centers in fluorinated diamond,” Appl. Phys. Lett., vol. 103, no. 5, 2013, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4817651

Cujia, K.

J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009

Cujia, K. S.

J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0

Curic, D.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242

Dadgostar, S.

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001

Dahlberg, A.

Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8

Daiss, S.

S. Daiss, “A quantum-logic gate between distant quantum-network modules,” Science, vol. 371, no. 6529, pp. 614–617, 2021. [Online]. Available: https://doi.org/10.1126/science.abe3150

Dam, S. B. van

S. B. van Dam, “Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.161203

Dam, S. van

M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049

Damskägg, E.

C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401

Dantan, A.

M. Pinard and A. Dantan, “Quantum limits of photothermal and radiation pressure cooling of a movable mirror,” New J. Phys., vol. 10, no. 9, 2008, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/10/9/095012

Dartiailh, M.

B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602

Das, A.

A. Das, “Demonstration of hybrid high-Q hexagonal boron nitride microresonators,” ACS Photon., vol. 8, no. 10, pp. 3027–3033, 2021.

B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602

Davançço, M.

Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603

Davanço, M.

Davis, J. P.

P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640

B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303

P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165

De Boni, L.

J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4

de Oliveira Luiz, G.

G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386

Deák, P.

M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y

A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404

Debroux, R.

R. Debroux, “Quantum control of the tin-vacancy spin qubit in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.11.041041

Degen, C.

C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106

Degen, C. L.

P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548

E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H

J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0

J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659

Degen, M. J.

M. J. Degen, “Entanglement of dark electron-nuclear spin defects in diamond,” Nature Commun., vol. 12, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-021-23454-9

Delaney, P.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001

Deleglise, S.

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236

Deotare, P.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72

Deutsch, C.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721

Devoret, M. H.

M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, pp. 1169–1174, 2013. [Online]. Available: https://doi.org/10.1126/science.1231930

Dibos, A. M.

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601

Diesch, S.

P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548

Dietrich, A.

A. Dietrich, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys., vol. 16, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/16/11/113019

Diler, B.

G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192

Dimock, M.

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844

DiVincenzo, D. P.

D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, pp. 255–261, 1995. [Online]. Available: https://doi.org/10.1126/science.270.5234.255

Dobrovitski, V. V.

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2

T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602

Doherty, M. W.

Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001

Dolan, P. R.

P. R. Dolan, “Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity,” Opt. Exp., vol. 26, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.26.007056

S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556

Dolde, F.

F. Dolde, “Nanoscale detection of a single fundamental charge in ambient conditions using the $\text{NV}^-$ center in diamond,” Phys. Rev. Lett., vol. 112, no. 9, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.097603

F. Dolde, “Room-temperature entanglement between single defect spins in diamond,” Nature Phys., vol. 9, no. 3, pp. 139–143, 2013. [Online]. Available: http://doi.org/10.1038/nphys2545

Domhan, M.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501

Dong, C.

Doolin, C.

B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303

P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165

Dory, C.

S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010

C. Dory, “Inverse-designed diamond photonics,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-11343-1

Dowdell, D. A.

A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735

Dréau, A.

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031

A. Dréau, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B, vol. 84, no. 19, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.84.195204

Duan, L.-M.

L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Modern Phys., vol. 82, pp. 1209–1224, 2010. [Online]. Available: https://doi.org/10.1103/RevModPhys.82.1209

Duine, R. A.

H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002

Dutt, M. V. G.

M. V. G. Dutt, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science, vol. 316, no. 5829, pp. 1312–1316, 2007. [Online]. Available: http://www.doi.org/10.1126/science.1139831

Dykman, M. I.

A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819

E. Barclay, P.

M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7

Eaton, S. M.

S. M. Eaton, “Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation,” Adv. Quantum Technol., vol. 2, no. 5/6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900006

Edmonds, A. M.

A. M. Edmonds, “Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications,” Mater. Quantum Technol., vol. 1, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/0.1088/2633-4356/abd88a

Eesley, G.

Egan, L.

L. Egan, “Fault-tolerant control of an error-corrected qubit,” Nature, vol. 598, pp. 281–286, 2021. [Online]. Available: https://doi.org/10.1038/s41586-021-03928-y

Eichenfield, M.

H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999

T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524

Eisenach, E. R.

E. R. Eisenach, “Cavity-enhanced microwave readout of a solid-state spin sensor,” Nature Commun., vol. 12, no. 1, pp. 1–7, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-21256-7

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on bell's theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, 1991. [Online]. Available: https://doi.org/10.1103/PhysRevLett.67.661

Elkouss, D.

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288

Engelsen, N. J.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176

Englund, D.

H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999

Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8

T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4

M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534

H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216

N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349

S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118

S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photon., vol. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4978204

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186

M. E. Trusheim and D. Englund, “Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond,” New J. Phys., vol. 18, no. 12, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/aa5040

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002

D. Englund, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett., vol. 10, pp. 3922–3926, 2010. [Online]. Available: https://doi.org/10.1021/nl101662v

Englund, D. R.

L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402

Espinel, Y. A.

F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508

Evans, R. E.

R. E. Evans, “Photon-mediated interactions between quantum emitters in a diamond nanocavity,” Science, vol. 362, pp. 662–665, 2018. [Online]. Available: https://doi.org/10.1126/science.aau4691

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010

Fan, L.

L. Fan, “Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv., vol. 4, 2018, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aar4994

L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850

Faraon, A.

J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9

A. Faraon, “Quantum photonic devices in single-crystal diamond,” New J. Phys., vol. 15, no. 2, 2013, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/15/2/025010

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52

K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023

P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007

Fedder, H.

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818

Fehler, K. G.

K. G. Fehler, “Hybrid quantum photonics based on artificial atoms placed inside one hole of a photonic crystal cavity,” ACS Photon., vol. 8, pp. 2635–2641, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00530

Fenici, R.

R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291

Fiaschi, N.

A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066

Fink, J. M.

J. M. Fink, “Climbing the jaynes-cummings ladder and observing its $\sqrt{n}$ nonlinearity in a cavity qed system,” Nature, vol. 454, pp. 315–318, 2008. [Online]. Available: https://doi.org/10.1038/nature07112

Fiore, V.

Fischer, M.

M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462

Fitzpatrick, M.

Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263

Flågan, S.

S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577

S. Flågan, P. Maletinsky, R. J. Warburton, and D. Riedel, “Microcavity platform for widely-tunable optical double resonance,” Optica, vol. 9, pp. 1197–1209, 2022. [Online]. Available: https://doi.org/10.1364/OPTICA.466003

D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036

Flatte, M. E.

M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314

Fong, K. Y.

L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850

Foretaste, N. C.

A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601

Forneris, J.

C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w

Forsch, M.

M. Forsch, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nature Phys., vol. 16, no. 1, pp. 69–74, 2020. [Online]. Available: https://doi.org/10.1038/s41567-019-0673-7

Frank, I. W.

M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917

Frateschi, N. C.

N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511

Frauenheim, T.

M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y

Freeman, M. R.

G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386

J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb

P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640

Frenner, K.

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818

Fröch, J. E.

B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A

J. E. Fröch, “Versatile direct-writing of dopants in a solid state host through recoil implantation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-020-18749-2

Frommer, J.

M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839

Fu, K.

K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135

Fu, K.-M. C.

S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.

K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52

P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948

K.-M. C. Fu, “Coupling of nitrogen-vacancy centers in diamond to a gap waveguide,” Appl. Phys. Lett., vol. 93, no. 23, 2008, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3045950

Fuchs, G. D.

B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362

E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358

E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q

Fuechsle, M.

M. Fuechsle, “A single-atom transistor,” Nature Nanotechnol., vol. 7, pp. 242–246, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.21

Fukami, M.

M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314

Furusawa, A.

J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229

Gaebel, T.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501

Gali, A.

G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075

G. Thiering and A. Gali, “Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond,” Phys. Rev. X, vol. 8, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.8.021063

M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y

A. Gali and J. R. Maze, “Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties,” Phys. Rev. B, vol. 88, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.88.235205

A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404

Gali, Á.

Á. Gali, “Ab initio theory of the nitrogen-vacancy center in diamond,” Nanophotonics, vol. 8, pp. 1907–1943, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0154

Galli, G.

W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266

Gao, W.

C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w

Gao, W. B.

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58

Genes, C.

P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14

Gerhardt, I.

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818

Gerlach, W.

W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik, vol. 9, pp. 349–352, 1922. [Online]. Available: http://doi.org/10.1007/BF01326983

Ghobadi, R.

R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825

Ghosh, S.

H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601

Giovannetti, S. L. Vittorio

S. L. Vittorio Giovannetti and L. Maccone, “Quantum metrology,” Phys. Rev. Lett., vol. 96, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.96.010401

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149

Girvin, S. M.

A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nature Photon., vol. 1, pp. 165–171, 2007. [Online]. Available: http://doi.org/10.1038/nphoton.2007.22

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145

Glenn, D. R.

D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781

Gloppe, A.

B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603

Glover, P.

P. Glover and P. Mansfield, “Limits to magnetic resonance microscopy,” Rep. Prog. Phys., vol. 65, no. 10, 2002, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/65/10/203

Golter, D. A.

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060

Görlitz, J.

J. Görlitz, “Spectroscopic investigations of negatively charged tin-vacancy centres in diamond,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab6631

J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512

Gorodetsky, M. L.

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236

Gosavi, T. A.

E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602

Götzinger, S.

X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545

Gould, M.

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001

M. Gould, “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. America B, vol. 33, no. 3, pp. B35–B42, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B35

Graham, T. M.

T. M. Graham, “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer,” Nature, vol. 604, pp. 457–462, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04603-6

Gray, S. K.

E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358

Graziosi, T.

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316

Grazioso, F.

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556

Greentree, A. D.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501

C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240

Greuter, L.

L. Greuter, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4896415

Grinolds, M. S.

M. S. Grinolds, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nature Nanotechnol., vol. 9, pp. 279–284, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.30

Gröblacher, S.

S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0

A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066

Y. Chu and S. Gröblacher, “A perspective on hybrid quantum opto- and electromechanical systems,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0021088

A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z

Grotz, B.

B. Grotz, “Charge state manipulation of qubits in diamond,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1729

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501

Gsell, S.

M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462

Guidry, M. A.

D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102

H. Abobeih, M.

M. H. Abobeih, “Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor,” Nature, vol. 576, no. 7787, pp. 411–415, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1834-7

H. Taminiau, T.

T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602

Häberle, T.

T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299

Hackett, L.

T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4

Hadden, J. P.

J. P. Hadden, “Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.43.003586

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, no. 9, pp. 963–970, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.000963

J. P. Hadden, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett., vol. 97, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3519847

Hainzer, H.

V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3

Hajisalem, G.

G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386

Hakonen, P. J.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993

Hammerer, K.

P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14

Hanson, R.

S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y

M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534

M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031

N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604

T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013

R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217

Haque, A.

A. Haque and S. Sumaiya, “An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation,” J. Manuf. Mater. Process., vol. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.3390/jmmp1010006

Harris, J. G. E.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715

Harrison, J.

N. Manson and J. Harrison, “Photo-ionization of the nitrogen-vacancy center in diamond,” Diamond Related Mater., vol. 14, no. 10, pp. 1705–1710, 2005. [Online]. Available: https://doi.org/10.1016/j.diamond.2005.06.027

Harrison, J. P.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303

Hase, M.

M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217

Hatami, F.

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001

Hatano, M.

P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840

Hauer, B. D.

B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303

P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165

Hauf, M. V.

M. V. Hauf, “Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures,” Nano Lett., vol. 14, no. 5, pp. 2359–2364, 2014. [Online]. Available: https://doi.org/10.1021/nl4047619

M. V. Hauf, “Chemical control of the charge state of nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 83, no. 8, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.83.081304

Hausmann, B.

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72

Hausmann, B. J.

P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica, vol. 2, no. 11, pp. 924–928, 2015. [Online]. Available: https://doi.org/10.1364/OPTICA.2.000924

B. J. Hausmann, “Coupling of $\text {NV}$ centers to photonic crystal nanobeams in diamond,” Nano Lett., vol. 13, pp. 5791–5796, 2013. [Online]. Available: https://doi.org/10.1021/nl402174g

B. J. Hausmann, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Related Mater., vol. 19, no. 5, pp. 621–629, 2010. [Online]. Available: https://doi.org/10.1016/j.diamond.2010.01.011

Häußler, S.

S. Häußler, “Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.165310

Hedrich, N.

N. Hedrich, “Nanoscale mechanics of antiferromagnetic domain walls,” Nature Phys., vol. 17, pp. 574–577, 2021. [Online]. Available: http://doi.org/10.1038/s41567-020-01157-0

N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007

Heikkilä, T. T.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993

Hensen, B.

A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z

B. Hensen, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–686, 2015. [Online]. Available: http://doi.org/10.1038/nature15759

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401

Hepp, C.

C. Hepp, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett., vol. 112, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.036405

Herb, K.

E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H

Heremans, F. J.

G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192

Hermans, S. L. N.

S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y

Hicks, M. L.

M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010

Hill, J. T.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201

Hingant, T.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503

Hirano, S.

S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7

Ho, K. O.

K. O. Ho, “Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy ($\text {NV})$ center in diamond,” J. Appl. Phys., vol. 129, no. 24, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0052233

Hofmann, J.

J. Hofmann, “Heralded entanglement between widely separated atoms,” Science, vol. 336, no. 6090, pp. 72–75, 2012. [Online]. Available: https://doi.org/10.1126/science.1221856

Hollenberg, L. C.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001

Hollenberg, L. C. L.

C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240

Hong, Z.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299

Horsley, A.

Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb

Hosten, O.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176

Hryciw, A. C.

B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999

Hu, E. L.

S. Cui and E. L. Hu, “Increased negatively charged nitrogen-vacancy centers in fluorinated diamond,” Appl. Phys. Lett., vol. 103, no. 5, 2013, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4817651

Huan, Y. Q.

J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9

Huang, C.

C. Huang, “Anisotropy effects in diamond under nanoindentation,” Carbon, vol. 132, pp. 606–615, 2018. [Online]. Available: https://doi.org/10.1016/j.carbon.2018.02.066

Huang, D.

D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604

Hughes, G. M.

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556

Humphreys, P. C.

P. C. Humphreys, “Deterministic delivery of remote entanglement on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273, 2018. [Online]. Available: http://doi.org/10.1038/s41586-018-0200-5

N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330

Hunger, D.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721

Huxter, W. S.

E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H

Imamoglu, A.

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58

Ishikawa, T.

T. Ishikawa, “Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer,” Nano Lett., vol. 12, pp. 2083–2087, 2012. [Online]. Available: https://doi.org/10.1021/nl300350r

Ishizu, S.

S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187

Itoh, K. M.

S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187

J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0

Ivanov, A.

S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425

Iwasaki, T.

P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840

T. Iwasaki, “Tin-vacancy quantum emitters in diamond,” Phys. Rev. Lett., vol. 119, no. 25, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.253601

T. Iwasaki, “Germanium-vacancy single color centers in diamond,” Sci. Rep., vol. 5, no. 1, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/srep12882

J. Mamin, H.

H. J. Mamin, “Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor,” Science, vol. 339, no. 6119, pp. 557–560, 2013. [Online]. Available: https://doi.org/10.1126/science.1231540

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.

J. T. Wagenaar, J.

T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602

Jackman, R. B.

M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010

Jacques, V.

B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070

Jahnke, K. D.

K. D. Jahnke, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys., vol. 17, no. 4, 2015, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/17/4/043011

Jakubczyk, T.

S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577

Jamali, M.

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818

Janitz, E.

E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844

E. Janitz, M. K. Bhaskar, and L. Childress, “Cavity quantum electrodynamics with color centers in diamond,” Optica, vol. 7, no. 10, 2020, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.398628

Janzén, E.

A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404

Javadi, A.

S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577

Jayakumar, H.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242

B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051

Jayich, A. B.

B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602

Jayich, A. Bleszynski

P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274

Jayich, A. C. B.

J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196

D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101

D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429

Jayich, A. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715

Jelezko, F.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001

T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501

Jensen, R. Høy

R. Høy Jensen, “Cavity-enhanced photon emission from a single germanium-vacancy center in a diamond membrane,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.064016

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9

Johnson, K.

H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216

Johnson, S.

S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003

S. Johnson, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys., vol. 17, 2015, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/17/12/122003

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9

Johnson, T. J.

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515

Jones, R.

H. Pinto and R. Jones, “Theory of the birefringence due to dislocations in single crystal CVD diamond,” J. Physics: Condens. Matter, vol. 21, no. 36, 2009, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0953-8984/21/36/364220

Jorio, A.

Jung, T.

T. Jung, “Spin measurements of NV centers coupled to a photonic crystal cavity,” APL Photon., vol. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5120120

Jungwirth, N. R.

E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602

Kainuma, Y.

M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217

Kalaee, M.

M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6

Kalb, N.

N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330

N. Kalb, “Entanglement distillation between solid-state quantum network nodes,” Science, vol. 356, no. 6341, pp. 928–932, 2017. [Online]. Available: http://doi.org/10.1126/science.aan0070

Kalish, R.

I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018

Kamaliddin, Y.

D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516

Kamra, A.

H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002

Kasevich, M. A.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176

Kasperczyk, M.

M. Kasperczyk, “Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures,” Phys. Rev. B, vol. 102, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.102.075312

A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102

M. Kasperczyk, A. Jorio, E. Neu, P. Maletinsky, and L. Novotny, “Stokes–anti-stokes correlations in diamond,” Opt. Lett., vol. 40, no. 10, pp. 2393–2396, 2015. [Online]. Available: https://doi.org/10.1364/OL.40.002393

Kasu, M.

S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7

Kato, Y.

H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720

Kaupp, H.

H. Kaupp, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.054010

Kaviani, H.

R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825

B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051

Kaviani, M.

M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y

Kaxiras, E.

A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404

Kazi, Z.

S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425

Kersul, C. M.

A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601

Ketterson, J. B.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299

Khanaliloo, B.

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, no. 9, pp. 963–970, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.000963

B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346

M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7

Kharel, P.

P. Kharel, “High-frequency cavity optomechanics using bulk acoustic phonons,” Sci. Adv., vol. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aav0582

Khasminskaya, S.

P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710

Kianinia, M.

M. Kianinia and I. Aharonovich, “Diamond photonics is scaling up,” Nature Photon., vol. 14, pp. 599–600, 2020. [Online]. Available: https://doi.org/10.1038/s41566-020-0695-9

Kikuchi, D.

D. Kikuchi, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Exp., vol. 10, 2017, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.7567/APEX.10.103004

Kim, M.

M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839

Kim, P. H.

B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303

P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640

P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165

Kim, S.

B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A

Kim, S.-W.

S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008. [Online]. Available: http://doi.org/10.1038/nature07127

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603

Kindem, J. M.

J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236

Kiss, M.

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316

Kleiner, R.

R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655

Klimov, P. V.

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026

Knall, E. N.

E. N. Knall, “Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System,” Phys. Rev. Lett., vol. 129, no. 5, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.129.053603

Koehl, W. F.

W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266

Koelle, D.

R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655

Kok, P.

S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A, vol. 71, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.71.060310

Kölbl, J.

A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102

J. Kölbl, “Initialization of single spin dressed states using shortcuts to adiabaticity,” Phys. Rev. Lett., vol. 122, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.090502

Kómár, P.

P. Kómár, “A quantum network of clocks,” Nature Phys., vol. 10, no. 8, pp. 582–587, 2014. [Online]. Available: http://doi.org/10.1038/nphys3000

Körber, R.

R. Körber, “SQUIDS in biomagnetism: A roadmap towards improved healthcare,” Supercond. Sci. Technol., vol. 29, no. 11, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/0953-2048/29/11/113001

Kosaka, H.

H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888

Kouwenhoven, L. P.

R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217

Kovalev, A. A.

A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201

Krastanov, S.

H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999

Krcmarsky, V.

V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3

Kresse, G.

A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404

Krinner, S.

S. Krinner, “Realizing repeated quantum error correction in a distance-three surface code,” Nature, vol. 605, no. 7911, pp. 669–674, 2022. [Online]. Available: http://doi.org/10.1038/s41586-022-04566-8

Krishnakumar, R.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176

Krutyanskiy, V.

V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3

Ku, M. J.

M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed

Kurokawa, H.

H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888

Kurtsiefer, C.

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005

Kuruma, K.

K. Kuruma, “Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond,” Appl. Phys. Lett., vol. 118, no. 23, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0051675

Kuwabara, A.

T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304

Kuzyk, M. C.

M. C. Kuzyk and H. Wang, “Controlling multimode optomechanical interactions via interference,” Phys. Rev. A, vol. 96, no. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.96.023860

Ladd, T. D.

G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812

Laer, R. Van

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812

Lake, D. P.

B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234

P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3

D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w

D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x

M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122

M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832

D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, no. 9, pp. 963–970, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.000963

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242

B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051

Lambert, N. J.

N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077

Lang, A.

A. Lang, “The strain-optical constants of diamond: A brief history of measurements,” Diamond Related Mater., vol. 18, no. 1, pp. 1–5, 2009. [Online]. Available: https://doi.org/10.1016/j.diamond.2008.07.020

Lang, J.

J. Lang, “Long optical coherence times of shallow-implanted, negatively charged silicon vacancy centers in diamond,” Appl. Phys. Lett., vol. 116, no. 6, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/1.5143014

Langenfeld, S.

S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506

S. Langenfeld, “Quantum teleportation between remote qubit memories with only a single photon as a resource,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.130502

Lanyon, B. P.

V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3

Latawiec, P.

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318

P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica, vol. 2, no. 11, pp. 924–928, 2015. [Online]. Available: https://doi.org/10.1364/OPTICA.2.000924

Lauk, N.

N. Lauk, “Perspectives on quantum transduction,” Quantum Sci. Technol., vol. 5, no. 2, 2020, Art. no. . [Online]. Available: http://doi.org/10.1088/2058-9565/ab788a

Lauria, P.

P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274

Ledbetter, M. P.

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801

Lee, D.

D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd

Lee, J.

D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781

Lee, K. G.

K. G. Lee, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photon., vol. 5, pp. 166–169, 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2010.312

Lee, K. W.

D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429

Lee, M. L.

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.

Lee, Y.

Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8

Leent, T. van

T. van Leent, “Entangling single atoms over 33 km telecom fibre,” Nature, vol. 607, no. 7917, pp. 69–73, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04764-4

Lehnert, K. W.

C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys.: Conf. Ser., vol. 264, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1742-6596/264/1/012025

Leibfried, D.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281

Lekavicius, I.

H. Wang and I. Lekavicius, “Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0024001

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060

Lemonde, M.-A.

M.-A. Lemonde, “Phonon networks with silicon-vacancy centers in diamond waveguides,” Phys. Rev. Lett., vol. 120, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.213603

Leon, N. P. de

D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081

Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263

Lepinay, L. Mercier de

B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603

Levenson, M. D.

Levonian, D.

D. Levonian, “Optical entanglement of distinguishable quantum emitters,” Phys. Rev. Lett., vol. 128, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.128.213602

Ley, L.

F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411

Li, L.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002

L. Li, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms7173

Liao, S.-K.

S.-K. Liao, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.120.030501

Lim, J. Y.

Lin, G.

Lipson, M.

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902

Liu, Y.

Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149

Lodahl, P.

J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091

Loncar, M.

C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318

P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica, vol. 2, no. 11, pp. 924–928, 2015. [Online]. Available: https://doi.org/10.1364/OPTICA.2.000924

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72

M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917

Loretz, M.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659

Losby, J. E.

G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386

J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb

Lovett, B. W.

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .

Lu, C.-H.

C.-H. Lu, “Generation of octave-spanning supercontinuum by Raman-assisted four-wave mixing in single-crystal diamond,” Opt. Exp., vol. 22, no. 4, pp. 4075–4082, 2014. [Online]. Available: https://doi.org/10.1364/OE.22.004075

Luan, L.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299

Ludwig, F.

R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655

Luiz, G. O.

F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508

Lukin, D. M.

D. M. Lukin, “Optical superradiance of a pair of color centers in an integrated silicon-carbide-on-insulator microresonator,” 2022, arXiv:2202.04845. [Online]. Available: https://doi.org/10.48550/arXiv.2202.04845

D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102

Lukin, M.

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549

Lukin, M. D.

D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010

Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501

Lux, O.

O. Lux, “Multi-octave frequency comb generation by $\chi$ (3)-nonlinear optical processes in CVD diamond at low temperatures,” Laser Phys. Lett., vol. 11, no. 8, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1612-2011/11/8/086101

MacCabe, G. S.

G. S. MacCabe, “Nano-acoustic resonator with ultralong phonon lifetime,” Science, vol. 370, no. 6518, pp. 840–843, 2020. [Online]. Available: https://doi.org/10.1126/science.abc7312

Maccone, L.

S. L. Vittorio Giovannetti and L. Maccone, “Quantum metrology,” Phys. Rev. Lett., vol. 96, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.96.010401

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149

MacDonald, N. C.

K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.

Machielse, B.

C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826

B. Machielse, “Quantum interference of electromechanically stabilized emitters in nanophotonic devices,” Phys. Rev. X, vol. 9, no. 3, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031022

MacQuarrie, E. R.

E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358

E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602

Madsen, L. S.

L. S. Madsen, “Quantum computational advantage with a programmable photonic processor,” Nature, vol. 606, pp. 75–81, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04725-x

Magnard, P.

P. Magnard, “Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.260502

Mahdaoui, A. E.

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031

Maier, F.

F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411

Maity, S.

S. Maity, “Coherent acoustic control of a single silicon vacancy spin in diamond,” Nature Commun., vol. 11, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-019-13822-x

Maletinsky, P.

S. Flågan, P. Maletinsky, R. J. Warburton, and D. Riedel, “Microcavity platform for widely-tunable optical double resonance,” Optica, vol. 9, pp. 1197–1209, 2022. [Online]. Available: https://doi.org/10.1364/OPTICA.466003

S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577

N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007

D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036

A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102

M. Kasperczyk, A. Jorio, E. Neu, P. Maletinsky, and L. Novotny, “Stokes–anti-stokes correlations in diamond,” Opt. Lett., vol. 40, no. 10, pp. 2393–2396, 2015. [Online]. Available: https://doi.org/10.1364/OL.40.002393

A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503

P. Maletinsky, “A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres,” Nature Nanotechnol., vol. 7, pp. 320–324, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.50

Mamin, H.

C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106

Mamin, H. J.

M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839

Mansfield, P.

P. Glover and P. Mansfield, “Limits to magnetic resonance microscopy,” Rep. Prog. Phys., vol. 65, no. 10, 2002, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/65/10/203

Manson, N.

N. Manson and J. Harrison, “Photo-ionization of the nitrogen-vacancy center in diamond,” Diamond Related Mater., vol. 14, no. 10, pp. 1705–1710, 2005. [Online]. Available: https://doi.org/10.1016/j.diamond.2005.06.027

Manson, N. B.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303

Marinkovic, I.

A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z

Markham, M.

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318

J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512

Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715

Marseglia, L.

L. Marseglia, “Bright nanowire single photon source based on SiV centers in diamond,” Opt. Exp., vol. 26, no. 1, pp. 80–89, 2018. [Online]. Available: https://doi.org/10.1364/OE.26.000080

L. Marseglia, “Nanofabricated solid immersion lenses registered to single emitters in diamond,” Appl. Phys. Lett., vol. 98, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573870

Marshall, M. C.

M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed

Martin, A. A.

T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229

Martínez, A.

L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601

Massel, F.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993

Masuda, T.

Maurer, P. C.

P. C. Maurer, “Room-temperature quantum bit memory exceeding one second,” Science, vol. 336, no. 6086, pp. 1283–1286, 2012. [Online]. Available: http://doi.org/10.1126/science.1220513

Maze, J. R.

A. Gali and J. R. Maze, “Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties,” Phys. Rev. B, vol. 88, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.88.235205

J. R. Maze, “Properties of nitrogen-vacancy centers in diamond: The group theoretic approach,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025025

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305

McCullian, B. A.

B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362

McKeever, J.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603

McLaughlin, B.

B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9

Meesala, S.

S. Meesala, “Strain engineering of the silicon-vacancy center in diamond,” Phys. Rev. B, vol. 97, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.97.205444

S. Meesala, “Enhanced strain coupling of nitrogen-vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl., vol. 5, no. 3, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.034010

Meijer, J.

J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024

J. Meijer, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett., vol. 87, 2005, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2103389

Meloni, A. M.

R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291

Ménard, M.

N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511

Mendonça, C. R.

J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4

Meraner, M.

V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3

Mercadé, L.

L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601

Meyler, B.

I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018

Meynell, S. A.

S. A. Meynell, “Engineering quantum-coherent defects: The role of substrate miscut in chemical vapor deposition diamond growth,” Appl. Phys. Lett., vol. 117, no. 19, 2020, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0029715

J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196

Mi, S.

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316

Mildren, R. P.

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950

R. P. Mildren, Intrinsic Optical Properties of Diamond.Hoboken, NJ, USA: Wiley, 2013, pp. 1–34. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527648603.ch1

Miller, R.

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603

Mirhosseini, M.

M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6

Misonou, D.

S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187

Mitchell, M.

B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234

D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w

D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x

M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832

M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122

D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, no. 9, pp. 963–970, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.000963

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999

Mitchell, M. J.

P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3

Miyamoto, Y.

P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840

Moehring, D. L.

D. L. Moehring, “Entanglement of single-atom quantum bits at a distance,” Nature, vol. 449, no. 7158, pp. 68–71, 2007. [Online]. Available: http://doi.org/10.1038/nature06118

Mokuno, Y.

H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720

Møller, C. B.

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114

Momenzadeh, S. A.

S. A. Momenzadeh, “Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers,” Nano Lett., vol. 15, pp. 165–169, 2015. [Online]. Available: https://doi.org/10.1021/nl503326t

Monroe, C.

L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Modern Phys., vol. 82, pp. 1209–1224, 2010. [Online]. Available: https://doi.org/10.1103/RevModPhys.82.1209

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281

Monteiro, T. S.

O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214

Moores, B. A.

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638

Morin, O.

P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5

S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506

Moser, J.

A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819

Motojima, M.

M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217

Mouradian, S.

N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349

S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118

Mouradian, S. L.

S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photon., vol. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4978204

S. L. Mouradian, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.031009

Mu, W.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299

Muniz, S. R.

J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4

Munsch, M.

M. Munsch, “Resonant driving of a single photon emitter embedded in a mechanical oscillator,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-017-00097-3

Myers, B.

P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274

Myers, B. A.

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429

B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602

Najer, D.

D. Najer, “A gated quantum dot strongly coupled to an optical microcavity,” Nature, vol. 575, no. 7784, pp. 622–627, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1709-y

D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812

Narang, P.

T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4

Narita, Y.

Y. Narita, “Identical photons from multiple tin-vacancy centers in diamond,” 2022, arXiv:2208.06275. [Online]. Available: https://doi.org/10.48550/arXiv.2208.06275

Naydenov, B.

B. Naydenov, “Increasing the coherence time of single electron spins in diamond by high temperature annealing,” Appl. Phys. Lett., vol. 97, no. 24, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3527975

Nebel, C.

P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494

P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710

Nelz, R.

R. Nelz, “Toward wafer-scale diamond nano- and quantum technologies,” APL Mater., vol. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5067267

Neu, E.

J. N. Becker and E. Neu, “The silicon vacancy center in diamond,” vol. 103, pp. 201–235, 2020. [Online]. Available: https://doi.org/10.1016/bs.semsem.2020.04.001

D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036

M. Kasperczyk, A. Jorio, E. Neu, P. Maletinsky, and L. Novotny, “Stokes–anti-stokes correlations in diamond,” Opt. Lett., vol. 40, no. 10, pp. 2393–2396, 2015. [Online]. Available: https://doi.org/10.1364/OL.40.002393

A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411

E. Neu, “Photonic nano-structures on (111)-oriented diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4871580

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater., vol. 2, pp. 911–928, 2014. [Online]. Available: http://doi.org/10.1002/adom.201400189

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956

Neuman, T.

T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4

Neumann, P.

P. Neumann, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett., vol. 13, no. 6, pp. 2738–2742, 2013. [Online]. Available: https://doi.org/10.1021/nl401216y

Newell, A. N.

A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735

Nguyen, C. T.

C. T. Nguyen, “An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond,” Phys. Rev. B, vol. 100, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.100.165428

C. T. Nguyen, “Quantum network nodes based on diamond qubits with an efficient nanophotonic interface,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.183602

Nguyen, M.

M. Nguyen, “Photodynamics and quantum efficiency of germanium vacancy color centers in diamond,” Adv. Photon., vol. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1117/1.AP.1.6.066002

Nichol, J. M.

G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863

Nielsen, W. H. P.

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114

Northup, T. E.

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nature Photon., vol. 8, pp. 356–363, May 2014. [Online]. Available: http://doi.org/10.1038/nphoton.2014.53

Novotny, L.

Nunnenkamp, A.

A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411

Oba, F.

T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304

O'Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812

J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229

Ockeloen-Korppi, C.

C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401

Ocola, L. E.

L. E. Ocola and A. Stein, “Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness,” J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct., vol. 24, no. 6, pp. 3061–3065, 2006. [Online]. Available: https://doi.org/10.1116/1.2366698

Ofori-Okai, B.

B. Ofori-Okai, “Spin properties of very shallow nitrogen vacancy defects in diamond,” Phys. Rev. B, vol. 86, no. 8, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.86.081406

Ohno, K.

B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602

K. Ohno, “Engineering shallow spins in diamond with nitrogen delta-doping,” Appl. Phys. Lett., vol. 101, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4748280

Okawachi, Y.

Oliveira, F. Fávaro de

F. Fávaro de Oliveira, “Tailoring spin defects in diamond by lattice charging,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15409

F. Fávaro de Oliveira, “Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 107, no. 7, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4929356

Oliver, W. D.

A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z

Oncebay, C.

J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4

Oo, T.

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060

Opaluch, O. R.

D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036

Orphal-Kobin, L.

L. Orphal-Kobin, “Optically coherent nitrogen-vacancy defect centers in diamond nanostructures,” 2022, arXiv:2203.05605. [Online]. Available: https://doi.org/10.48550/arXiv.2203.05605

Orwa, J. O.

J. O. Orwa, “An upper limit on the lateral vacancy diffusion length in diamond,” Diam. Relat. Mater., vol. 24, 2012, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2012.02.009

J. O. Orwa, “Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing,” J. Appl. Phys., vol. 109, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573768

Osterkamp, C.

C. Osterkamp, “Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF$_{6}$ plasma treatment,” Appl. Phys. Lett., vol. 106, no. 11, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4915305

Otten, M.

E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358

Ovartchaiyapong, P.

D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429

P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274

P. Davis, J.

M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7

Painter, O.

M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378

Pakpour-Tabrizi, A. C.

M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010

Palm, M. L.

P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548

Pan, A.

G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863

Park, H.

D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781

Pascal, L.

P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274

Patel, P.

M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917

Paternostro, M.

S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0

Patton, B. R.

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556

Pederson, C.

S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425

Pelka, K.

L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601

Pernice, W.

P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710

Pernice, W. H.

P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494

Petráková, V.

V. Petráková, “Luminescence of nanodiamond driven by atomic functionalization: Towards novel detection principles,” Adv. Funct. Mater., vol. 22, no. 4, pp. 812–819, 2012. [Online]. Available: https://doi.org/10.1002/adfm.201101936

Petta, J. R.

G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863

S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971

R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217

Pezzagna, S.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024

S. Pezzagna, “Nanoscale engineering and optical addressing of single spins in diamond,” Small, vol. 6, pp. 2117–2121, 2010. [Online]. Available: https://doi.org/10.1002/smll.201000902

Pfaff, W.

W. Pfaff, “Unconditional quantum teleportation between distant solid-state quantum bits,” Science, vol. 345, no. 6196, pp. 532–535, 2014. [Online]. Available: https://doi.org/10.1126/science.1253512

Pfender, M.

M. Pfender, “Protecting a diamond quantum memory by charge state control,” Nano Lett., vol. 17, no. 10, pp. 5931–5937, 2017. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b01796

Pham, L. M.

H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216

Phenicie, C. M.

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601

Phillips, D. F.

M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed

Pigeau, B.

B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603

Pinard, M.

M. Pinard and A. Dantan, “Quantum limits of photothermal and radiation pressure cooling of a movable mirror,” New J. Phys., vol. 10, no. 9, 2008, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/10/9/095012

Pingault, B.

B. Pingault, “Coherent control of the silicon-vacancy spin in diamond,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15579

Pinto, H.

H. Pinto and R. Jones, “Theory of the birefringence due to dislocations in single crystal CVD diamond,” J. Physics: Condens. Matter, vol. 21, no. 36, 2009, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0953-8984/21/36/364220

Pirkkalainen, J.-M.

C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993

Poggio, M.

P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14

C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106

Poluektov, O. G.

G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192

Polzik, E. S.

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114

Pompili, M.

S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y

M. Pompili, “Experimental demonstration of entanglement delivery using a quantum network stack,” NPJ Quantum Inf., vol. 8, 2022, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-022-00631-2

M. Pompili, “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, 2021. [Online]. Available: http://doi.org/10.1126/science.abg1919

Poncharal, P.

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070

Pontin, A.

A. Pontin, “Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system,” Phys. Rev. Lett., vol. 116, no. 10, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.103601

Poot, M.

L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850

Popa, I.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501

Povinelli, M.

M. Povinelli, “Evanescent-wave bonding between optical waveguides,” Opt. Lett., vol. 30, no. 22, 2005, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.30.003042

Prawer, S.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501

Primo, A. G.

A. G. Primo, “Accurate modeling and characterization of photothermal forces in optomechanics,” APL Photon., vol. 6, no. 8, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0055201

A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601

Pscherer, A.

A. Pscherer, “Single-molecule vacuum Rabi splitting: Four-wave mixing and optical switching at the single-photon level,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.133603

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, 1946, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRev.69.674.2

Quack, N.

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316

R. Freeman, M.

M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7

Rabeau, J. R.

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950

Rabl, P.

P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501

Radko, I. P.

I. P. Radko, “Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond,” Opt. Exp., vol. 24, 2016, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.24.027715

Raha, M.

D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601

Ralchenko, V.

J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354

Ramos, D.

M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917

Randall, J.

O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214

Rani, D.

D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036

Raniwala, H.

H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999

Rath, P.

P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494

P. Rath, “Diamond electro-optomechanical resonators integrated in nanophotonic circuits,” Appl. Phys. Lett., vol. 105, no. 25, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4901105

P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710

Regal, C. A.

S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0

C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys.: Conf. Ser., vol. 264, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1742-6596/264/1/012025

Regan, B.

B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A

Reichel, J.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721

Reinhard, F.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002

T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299

Reiserer, A.

A. Reiserer, “Robust quantum-network memory using decoherence-protected subspaces of nuclear spins,” Phys. Rev. X, vol. 6, no. 2, 2016, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.6.021040

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Modern Phys., vol. 87, pp. 1379–1418, 2015. [Online]. Available: https://doi.org/10.1103/RevModPhys.87.1379

Rempe, G.

P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5

S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Modern Phys., vol. 87, pp. 1379–1418, 2015. [Online]. Available: https://doi.org/10.1103/RevModPhys.87.1379

Renggli, M.

D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458

Rettner, C.

C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106

Rettner, C. T.

M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839

Rezai, M.

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145

Riedel, D.

S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577

S. Flågan, P. Maletinsky, R. J. Warburton, and D. Riedel, “Microcavity platform for widely-tunable optical double resonance,” Optica, vol. 9, pp. 1197–1209, 2022. [Online]. Available: https://doi.org/10.1364/OPTICA.466003

S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010

D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036

D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458

D. Riedel, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X, vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.7.031040

D. Riedel, “Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond,” Phys. Rev. Appl., vol. 2, 2014, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.2.064011

Riedrich-Möller, J.

J. Riedrich-Möller, “Nanoimplantation and purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett., vol. 106, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4922117

J. Riedrich-Möller, “Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond,” Nano Lett., vol. 14, no. 9, pp. 5281–5287, 2014. [Online]. Available: http://doi.org/10.1021/nl502327b

J. Riedrich-Möller, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nature Nanotechnol., vol. 7, pp. 69–74, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2011.190

Ristein, J.

F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411

Ritter, S.

S. Ritter, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012. [Online]. Available: http://doi.org/10.1038/nature11023

Robledo, L.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013

Roch, J.-F.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503

Rochman, J.

J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9

Rodgers, L. V. H.

Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263

Rogalla, D.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024

Rogers, L.

L. Rogers, “Multiple intrinsically identical single-photon emitters in the solid state,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms5739

Rogers, L. J.

L. J. Rogers, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.263602

Rohner, D.

N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007

Rohr, S.

B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603

Rondin, L.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503

L. Rondin, “Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds,” Phys. Rev. B, vol. 82, no. 11, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.82.115449

Rong, X.

X. Rong, “Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions,” Nature Commun., vol. 6, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms9748

Rong, Y.

Y. Rong, “Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation,” Opt. Lett., vol. 44, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.44.003793

Rose, B. C.

B. C. Rose, “Observation of an environmentally insensitive solid-state spin defect in diamond,” Science, vol. 361, pp. 60–63, 2018. [Online]. Available: https://www.doi.org/10.1126/science.aao0290

Rueda, A.

N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077

Ruf, M.

M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534

M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049

M. Ruf, “Optically coherent nitrogen-vacancy centers in micrometer-thin etched diamond membranes,” Nano Lett., vol. 19, pp. 3987–3992, 2019. [Online]. Available: http://doi.org/10.1021/acs.nanolett.9b01316

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844

Rugar, A. E.

A. E. Rugar, “Quantum photonic interface for tin-vacancy centers in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevX.11.031021

S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010

A. E. Rugar, “Narrow-linewidth tin-vacancy centers in a diamond waveguide,” ACS Photon., vol. 7, pp. 2356–2361, 2020. [Online]. Available: https://doi.org/10.1021/acsphotonics.0c00833

A. E. Rugar, “Generation of tin-vacancy centers in diamond via shallow ion implantation and subsequent diamond overgrowth,” Nano Lett., vol. 20, pp. 1614–1619, 2020. [Online]. Available: https://doi.org/10.1021/acs.nanolett.9b04495

Rugar, D.

D. Rugar, “Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor,” Nature Nanotechnol., vol. 10, pp. 120–124, 2015. [Online]. Available: http://doi.org/10.1038/nnano.2014.288

M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839

C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.

Ruscio, L.

P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5

Ruskov, R.

Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502

Ruskuc, A.

J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9

Sørensen, A. S.

J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091

Saada, S.

J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201

Salzman, J.

I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018

Sanders, B. C.

D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x

Sandoghdar, V.

X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545

Sangtawesin, S.

Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263

S. Sangtawesin, “Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031052

S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971

Sani, F. F.

P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640

Sankey, J.

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844

Santamore, D. H.

A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735

Santis, L. D.

L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604

K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52

P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007

K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948

Santos, F. G.

F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508

Santos, L. F. dos

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242

Sar, T. V. D.

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013

Sar, T. van der

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2

T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602

Sarma, B.

B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535

Sasaki, K.

S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187

J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0

Sauer, V. T.

G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386

Sauer, V. T. K.

J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb

Schaeper, O. C.

B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305

Scheidegger, P. J.

P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548

Schenkel, T.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q

Schirhagl, R.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659

Schliesser, A.

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236

Schloss, J. M.

J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044

Schmidgall, E. R.

E. R. Schmidgall, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett., vol. 18, pp. 1175–1179, 2018. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b04717

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001

Schmid-Lorch, D.

T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299

Schmitt, S.

S. Schmitt, “Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor,” Science, vol. 356, no. 6340, pp. 832–837, 2017. [Online]. Available: https://doi.org/10.1126/science.aam5532

Schoelkopf, R. J.

M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, pp. 1169–1174, 2013. [Online]. Available: https://doi.org/10.1126/science.1231930

Schreck, M.

M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462

Schröder, T.

S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118

T. Schröder, “Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15376

T. Schröder, “Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation,” Opt. Mater. Exp., vol. 7, May 2017, Art. no. . [Online]. Available: https://doi.org/10.1364/OME.7.001514

T. Schröder, “Quantum nanophotonics in diamond [Invited],” J. Opt. Soc. Amer. B, vol. 33, no. 4, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B65

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002

Schupp, J.

V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3

Schwefel, H. G.

N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077

Sedlmeir, F.

N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077

Sedov, V.

V. Sedov, “Growth of polycrystalline and single-crystal $\text {CVD}$ diamonds with bright photoluminescence of $\text {Ge-V}$ color centers using germane $\text {GeH}_{4}$ as the dopant source,” Diamond Related Mater., vol. 90, pp. 47–53, 2018. [Online]. Available: https://doi.org/10.1016/j.diamond.2018.10.001

V. Sedov, “SiV color centers in Si-doped isotopically enriched $^{12}\text {C}$ and $^{13}\text {C}$ CVD diamonds,” Physica Status Solidi (a), vol. 214, 2017, Art. no. . [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/pssa.201700198

Seidelin, S.

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070

Sekiguchi, Y.

H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888

Sellars, M. J.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303

Seo, H.

W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266

Shah, S.

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902

Shams-Ansari, A.

C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318

Shandilya, P. K.

P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3

P. K. Shandilya, “Hexagonal boron nitride cavity optomechanics,” Nano Lett., vol. 19, no. 2, pp. 1343–1350, 2019. [Online]. Available: https://doi.org/10.1021/acs.nanolett.8b04956

P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1

Shanley, T. W.

T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229

Shaw, K. A.

K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.

Sherwood, M. H.

M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839

Shields, B. J.

N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007

Shigekawa, H.

M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217

Shikata, S.

H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720

Sievert, P. R.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299

Sillanpää, M.

C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401

Sillanpää, M. A.

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993

Simon, C.

R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825

Simon, J.

H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601

Simpson, D. A.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501

Sipahigil, A.

M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6

A. Sipahigil, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science, vol. 354, pp. 847–850, 2016. [Online]. Available: https://doi.org/10.1126/science.aah6875

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010

A. Sipahigil, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.113602

A. Sipahigil, “Quantum interference of single photons from remote nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.143601

Siqueira, J. P.

J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4

Siria, A.

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070

Siyushev, P.

P. Siyushev, “Optical and microwave control of germanium-vacancy center spins in diamond,” Phys. Rev. B, vol. 96, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.96.081201

Slim, J. J.

N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330

Smith, J. M.

J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196

S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .

Sohn, Y.-I.

Y.-I. Sohn, “Controlling the coherence of a diamond spin qubit through its strain environment,” Nature Commun., vol. 9, no. 1, 2018, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-018-04340-3

Son, N. T.

N. T. Son, “Developing silicon carbide for quantum spintronics,” Appl. Phys. Lett., vol. 116, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0004454

Song, J. D.

Song, Y.

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.

Sørensen, A. S.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501

Soshenko, V. V.

V. V. Soshenko, “Nuclear spin gyroscope based on the nitrogen vacancy center in diamond,” Phys. Rev. Lett., vol. 126, no. 19, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.197702

Souris, F.

B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303

P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165

Soykal, Ö. O.

Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502

Srinivasan, K.

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica, vol. 1, no. 6, pp. 414–420, 2014. [Online]. Available: https://doi.org/10.1364/OPTICA.1.000414

Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378

Srinivasan, S.

Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263

Stannigel, K.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501

Starosielec, S.

D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458

Stas, P.-J.

P.-J. Stas, “Robust multi-qubit quantum network node with integrated error detection,” 2022, arXiv:2207.13128. [Online]. Available: https://doi.org/10.48550/arXiv.2207.13128

Staudacher, T.

T. Staudacher, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)$^{3}$ sample volume,” Science, vol. 339, no. 6119, pp. 561–563, 2013. [Online]. Available: https://doi.org/10.1126/science.1231675

T. Staudacher, “Enhancing the spin properties of shallow implanted nitrogen vacancy centers in diamond by epitaxial overgrowth,” Appl. Phys. Lett., vol. 101, no. 21, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4767144

Stearn, S.

Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb

Stein, A.

L. E. Ocola and A. Stein, “Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness,” J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct., vol. 24, no. 6, pp. 3061–3065, 2006. [Online]. Available: https://doi.org/10.1116/1.2366698

Stephen, C. J.

C. J. Stephen, “Deep three-dimensional solid-state qubit arrays with long-lived spin coherence,” Phys. Rev. Appl., vol. 12, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.12.064005

Stephenson, L.

L. Stephenson, “High-rate, high-fidelity entanglement of qubits across an elementary quantum network,” Phys. Rev. Lett., vol. 124, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.110501

Stern, O.

W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik, vol. 9, pp. 349–352, 1922. [Online]. Available: http://doi.org/10.1007/BF01326983

Stewart, K. A.

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060

Stockill, R.

A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066

A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z

R. Stockill, “Phase-tuned entangled state generation between distant spin qubits,” Phys. Rev. Lett., vol. 119, 2017, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.119.010503

Stöhr, R. J.

L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501

Stolk, A.

A. Stolk, “Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers,” PRX Quantum, vol. 3, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.3.020359

Su, C.-H.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501

C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240

Sukachev, D.

D. Sukachev, “Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett., vol. 119, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.223602

Sukachev, D. D.

D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w

P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010

Sumaiya, S.

A. Haque and S. Sumaiya, “An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation,” J. Manuf. Mater. Process., vol. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.3390/jmmp1010006

Sun, S.

S. Sun, “Cavity-enhanced Raman emission from a single color center in a solid,” Phys. Rev. Lett., vol. 121, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.121.083601

Suzuki, T.

M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217

Tahan, C.

Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502

Takaya, R.

S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7

Tamarat, P.

P. Tamarat, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett., vol. 97, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.97.083002

Taminiau, T. H.

O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2

Tamura, S.

S. Tamura, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Exp., vol. 7, no. 11, 2014, Art. no. . [Online]. Available: http://doi.org/10.7567/APEX.7.115201

Tanaka, I.

T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304

Tang, H. X.

L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850

Taniguchi, T.

P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840

Tanji, H.

H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601

Tao, Y.

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638

Tarucha, S.

R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217

Taylor, J. M.

J. M. Taylor, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Phys., vol. 4, pp. 810–816, 2008. [Online]. Available: https://doi.org/10.1038/nphys1075

Tcheborateva, A.

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031

Tchebotareva, A.

A. Tchebotareva, “Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength,” Phys. Rev. Lett., vol. 123, no. 6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.063601

Tchernij, S. D.

S. D. Tchernij, “Single-photon emitters in lead-implanted single-crystal diamond,” ACS Photon., vol. 5, pp. 4864–4871, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.8b01013

S. D. Tchernij, “Single-photon-emitting optical centers in diamond fabricated upon sn implantation,” ACS Photon., vol. 4, no. 10, pp. 2580–2586, 2017. [Online]. Available: http://doi.org/10.1021/acsphotonics.7b00904

Teale, C.

H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216

Teissier, J.

A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503

Teraji, T.

S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187

Tetienne, J.-P.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503

Teufel, J.

J. Teufel, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature, vol. 475, no. 7356, pp. 359–363, 2011. [Online]. Available: https://doi.org/10.1038/nature10261

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nature Photon., vol. 1, pp. 165–171, 2007. [Online]. Available: http://doi.org/10.1038/nphoton.2007.22

Thiel, L.

L. Thiel, “Probing magnetism in 2D materials at the nanoscale with single-spin microscopy,” Science, vol. 364, pp. 973–976, 2019. [Online]. Available: https://www.science.org/doi/10.1126/science.aav6926

Thiering, G.

G. Thiering and A. Gali, “Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond,” Phys. Rev. X, vol. 8, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.8.021063

Thomas, N.

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.

Thomas, P.

P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5

S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506

Thompson, J. D.

D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715

Thourhout, D. Van

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145

Tiwari, A. K.

A. K. Tiwari, “Calculated electron affinity and stability of halogen-terminated diamond,” Phys. Rev. B, vol. 84, no. 24, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.84.245305

Togan, E.

E. Togan, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature, vol. 466, no. 7307, pp. 730–734, 2010. [Online]. Available: http://doi.org/10.1038/nature09256

Tohei, T.

T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304

Tomm, N.

N. Tomm, “A bright and fast source of coherent single photons,” Nature Nanotechnol., vol. 16, pp. 399–403, 2021. [Online]. Available: http://doi.org/10.1038/s41565-020-00831-x

Toth, M.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186

T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229

Toyli, D. M.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q

Treutlein, P.

P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14

Trusheim, M. E.

T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4

L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402

M. E. Trusheim, “Transform-limited photons from a coherent tin-vacancy spin in diamond,” Phys. Rev. Lett., vol. 124, no. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.023602

C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w

M. E. Trusheim, “Lead-related quantum emitters in diamond,” Phys. Rev. B, vol. 99, no. 7, 2019, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.99.075430

M. E. Trusheim and D. Englund, “Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond,” New J. Phys., vol. 18, no. 12, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/aa5040

Trycz, A.

B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A

Tsaturyan, Y.

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114

Tsukahara, R.

R. Tsukahara, “Removing non-size-dependent electron spin decoherence of nanodiamond quantum sensors by aerobic oxidation,” ACS Appl. Nano Mater., vol. 2, no. 6, pp. 3701–3710, 2019. [Online]. Available: http://doi.org/10.1021/acsanm.9b00614

Turner, M. J.

M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed

J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044

Twamley, J.

B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535

Twitchen, D.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604

Twitchen, D. J.

Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801

Ummethala, S.

P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494

Unden, T.

T. Unden, “Quantum metrology enhanced by repetitive quantum error correction,” Phys. Rev. Lett., vol. 116, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.230502

Vahala, K. J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524

Valivarthi, R.

R. Valivarthi, “Quantum teleportation across a metropolitan fibre network,” Nature Photon., vol. 10, pp. 676–680, 2016. [Online]. Available: http://doi.org/10.1038/nphoton.2016.180

van der Sar, T.

F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88

Vandersypen, L. M. K.

R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217

Vella, S.

Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb

Venkataraman, V.

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318

P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica, vol. 2, no. 11, pp. 924–928, 2015. [Online]. Available: https://doi.org/10.1364/OPTICA.2.000924

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72

Verhagen, E.

A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066

L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601

Vincent, P.

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070

Völker, L. A.

E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H

Vuckovic, J.

S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010

D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102

J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229

Vuletic, V.

H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601

W. Bauer, G. E.

A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201

W. Chui, B.

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.

Wahl, U.

U. Wahl, “Direct structural identification and quantification of the split-vacancy configuration for implanted Sn in diamond,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.045301

Waldherr, G.

G. Waldherr, “Quantum error correction in a solid-state hybrid spin register,” Nature, vol. 506, pp. 204–207, 2014. [Online]. Available: http://doi.org/10.1038/nature12919

Wallucks, A.

A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z

Walsworth, R.

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549

Walsworth, R. L.

M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed

J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044

D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781

Wan, N. H.

M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534

N. H. Wan, “Large-scale integration of artificial atoms in hybrid photonic circuits,” Nature, vol. 583, pp. 226–231, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2441-3

N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349

S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118

Wandel, M. E.

M. E. Wandel, “Attenuation in silica-based optical fibers,” Ph.D. dissertation, DTU, 2006. [Online]. Available: https://orbit.dtu.dk/en/publications/attenuation-in-silica-based-optical-fibers

Wang, C.

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005

Wang, D.

D. Wang, “Turning a molecule into a coherent two-level quantum system,” Nature Phys., vol. 15, pp. 483–489, May 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0436-5

Wang, H.

H. Wang and I. Lekavicius, “Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0024001

M. C. Kuzyk and H. Wang, “Controlling multimode optomechanical interactions via interference,” Phys. Rev. A, vol. 96, no. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.96.023860

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060

C. Dong, J. Zhang, V. Fiore, and H. Wang, “Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes,” Optica, vol. 1, no. 6, pp. 425–428, 2014. [Online]. Available: https://doi.org/10.1364/OPTICA.1.000425

Wang, P.

P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840

Warburton, R. J.

S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577

S. Flågan, P. Maletinsky, R. J. Warburton, and D. Riedel, “Microcavity platform for widely-tunable optical double resonance,” Optica, vol. 9, pp. 1197–1209, 2022. [Online]. Available: https://doi.org/10.1364/OPTICA.466003

D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036

D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458

R. J. Warburton, “Single spins in self-assembled quantum dots,” Nature Mater., vol. 12, no. 6, pp. 483–493, 2013. [Online]. Available: https://doi.org/10.1038/nmat3585

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721

Watkins, B.

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299

Waxman, A.

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801

Weaver, M.

M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049

Weaver, M. J.

M. J. Weaver, “Coherent optomechanical state transfer between disparate mechanical resonators,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-017-00968-9

Webb, J. L.

J. L. Webb, “Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals,” Front. Phys., vol. 8, 2020, Art. no. . [Online]. Available: https://doi.org/10.3389/fphy.2020.522536

Wehner, S.

Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288

Weig, E. M.

S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0

Wein, S.

R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825

Weinfurter, H.

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005

Weis, C. D.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q

Welinski, S.

D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081

Whaites, O. T.

O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214

Whiteley, S. J.

S. J. Whiteley, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nature Phys., vol. 15, no. 5, pp. 490–495, 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0420-0

Wiederhecker, G. S.

N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511

A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601

F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508

Wild, C.

P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710

Wildanger, D.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024

Wineland, D.

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9

Wolf, T.

T. Wolf, “Subpicotesla diamond magnetometry,” Phys. Rev. X, vol. 5, no. 4, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041001

Wolfowicz, G.

G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192

Wong, K. C.

K. C. Wong, “Microscopic study of optically stable coherent color centers in diamond generated by high-temperature annealing,” Phys. Rev. Appl., vol. 18, no. 2, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.18.024044

Woolley, M.

C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401

M. Woolley and A. Clerk, “Two-mode back-action-evading measurements in cavity optomechanics,” Phys. Rev. A, vol. 87, no. 6, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.87.063846

Wrachtrup, J.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2

T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501

Wu, M.

M. Wu, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nature Nanotechnol., vol. 12, no. 2, pp. 127–131, 2017. [Online]. Available: https://doi.org/10.1038/nnano.2016.226

M. Wu, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.4.021052

M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7

Wu, Y.

Y. Wu, “Strong quantum computational advantage using a superconducting quantum processor,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.180501

Xie, L.

L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501

Xuereb, A.

S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0

L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601

Y. Yuan, H.

H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002

Yacoby, A.

L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501

F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88

Yamada, H.

H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720

Yamamoto, M.

H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888

Yan, P.

H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002

Yan, X.

X. Yan, “Silicon photonic quantum computing with spin qubits,” APL Photon., vol. 6, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0049372

Yeo, I.

I. Yeo, “Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system,” Nature Nanotechnol., vol. 9, no. 2, pp. 106–110, 2014. [Online]. Available: https://doi.org/10.1038/nnano.2013.274

Yin, J.

J. Yin, “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2401-y

Yu, Y.

Y. Yu, “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, no. 7794, pp. 240–245, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-1976-7

Yuan, Z.

Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263

Yurgens, V.

V. Yurgens, “Low-charge-noise nitrogen-vacancy centers in diamond created using laser writing with a solid-immersion lens,” ACS Photon., vol. 8, pp. 1726–1734, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00274

Zaitsev, A.

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024

A. Zaitsev, Optical Properties of Diamond. Berlin, Heidelberg, Germany: Springer-Verlag, 2001. [Online]. Available: https://doi.org/10.1007/978-3-662-04548-0

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145

Zhai, L.

L. Zhai, “Quantum interference of identical photons from remote GaAs quantum dots,” Nature Nanotechnol., vol. 17, pp. 829–833, 2022. [Online]. Available: https://doi.org/10.1038/s41565-022-01131-2

Zhang, G.

G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075

Zhang, J.

Zhang, J. L.

J. L. Zhang, “Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers,” Nano Lett., vol. 16, no. 1, pp. 212–217, 2016. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b03515

Zhang, M.

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902

Zhang, Z.

D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101

Zhang, Z. H.

Z. H. Zhang, “Optically detected magnetic resonance in neutral silicon vacancy centers in diamond via bound exciton states,” Phys. Rev. Lett., vol. 125, pp. 1–6, 2020. [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.237402

Zhang, Z. L.

K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.

Zhang, Z.-H.

Z.-H. Zhang, “Neutral silicon vacancy centers in undoped diamond via surface control,” 2022, arXiv:2206.13698. [Online]. Available: http://arxiv.org/abs/2206.13698

Zhao, Z.

Z. Zhao, “Sub-nanotesla sensitivity at the nanoscale with a single spin,” 2022, arXiv:2205.04415. [Online]. Available: https://doi.org/10.48550/arXiv.2205.04415

Zhong, H.-S.

H.-S. Zhong, “Quantum computational advantage using photons,” Science, vol. 370, pp. 1460–1463, 2020. [Online]. Available: https://doi.org/10.1126/science.abe8770

Zhong, M.

M. Zhong, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature, vol. 517, no. 7533, pp. 177–180, 2015. [Online]. Available: http://doi.org/10.1038/nature14025

Zhong, T.

T. Zhong, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science, vol. 357, no. 6358, pp. 1392–1395, 2017. [Online]. Available: https://doi.org/10.1126/science.aan5959

Zhou, B. B.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2

Zhou, T. X.

L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501

Zibrov, A. S.

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010

Zivari, A.

A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066

Zoller, P.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501

Zopes, J.

J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0

J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009

Zwickl, B. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715

ACS Appl. Nano Mater. (1)

R. Tsukahara, “Removing non-size-dependent electron spin decoherence of nanodiamond quantum sensors by aerobic oxidation,” ACS Appl. Nano Mater., vol. 2, no. 6, pp. 3701–3710, 2019. [Online]. Available: http://doi.org/10.1021/acsanm.9b00614

ACS Photon. (8)

P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840

S. D. Tchernij, “Single-photon-emitting optical centers in diamond fabricated upon sn implantation,” ACS Photon., vol. 4, no. 10, pp. 2580–2586, 2017. [Online]. Available: http://doi.org/10.1021/acsphotonics.7b00904

S. D. Tchernij, “Single-photon emitters in lead-implanted single-crystal diamond,” ACS Photon., vol. 5, pp. 4864–4871, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.8b01013

V. Yurgens, “Low-charge-noise nitrogen-vacancy centers in diamond created using laser writing with a solid-immersion lens,” ACS Photon., vol. 8, pp. 1726–1734, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00274

A. Das, “Demonstration of hybrid high-Q hexagonal boron nitride microresonators,” ACS Photon., vol. 8, no. 10, pp. 3027–3033, 2021.

D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516

A. E. Rugar, “Narrow-linewidth tin-vacancy centers in a diamond waveguide,” ACS Photon., vol. 7, pp. 2356–2361, 2020. [Online]. Available: https://doi.org/10.1021/acsphotonics.0c00833

K. G. Fehler, “Hybrid quantum photonics based on artificial atoms placed inside one hole of a photonic crystal cavity,” ACS Photon., vol. 8, pp. 2635–2641, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00530

Adv. Funct. Mater. (1)

V. Petráková, “Luminescence of nanodiamond driven by atomic functionalization: Towards novel detection principles,” Adv. Funct. Mater., vol. 22, no. 4, pp. 812–819, 2012. [Online]. Available: https://doi.org/10.1002/adfm.201101936

Adv. Mater. (1)

L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501

Adv. Opt. Mater. (1)

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater., vol. 2, pp. 911–928, 2014. [Online]. Available: http://doi.org/10.1002/adom.201400189

Adv. Photon. (1)

M. Nguyen, “Photodynamics and quantum efficiency of germanium vacancy color centers in diamond,” Adv. Photon., vol. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1117/1.AP.1.6.066002

Adv. Quantum Technol. (2)

S. M. Eaton, “Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation,” Adv. Quantum Technol., vol. 2, no. 5/6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900006

J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091

AIP Adv. (1)

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721

Annu. Rev. Phys. Chem. (1)

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659

APL Mater. (1)

R. Nelz, “Toward wafer-scale diamond nano- and quantum technologies,” APL Mater., vol. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5067267

APL Photon. (8)

H. A. Atikian, “Freestanding nanostructures via reactive ion beam angled etching,” APL Photon., vol. 2, no. 5, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4982603

X. Yan, “Silicon photonic quantum computing with spin qubits,” APL Photon., vol. 6, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0049372

S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photon., vol. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4978204

A. G. Primo, “Accurate modeling and characterization of photothermal forces in optomechanics,” APL Photon., vol. 6, no. 8, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0055201

N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316

M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122

T. Jung, “Spin measurements of NV centers coupled to a photonic crystal cavity,” APL Photon., vol. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5120120

Appl. Phys. Exp. (3)

D. Kikuchi, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Exp., vol. 10, 2017, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.7567/APEX.10.103004

S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7

S. Tamura, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Exp., vol. 7, no. 11, 2014, Art. no. . [Online]. Available: http://doi.org/10.7567/APEX.7.115201

Appl. Phys. Lett (3)

P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640

M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917

I. Bayn, “Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks,” Appl. Phys. Lett., vol. 105, no. 21, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4902562

Appl. Phys. Lett. (37)

S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118

P. Rath, “Diamond electro-optomechanical resonators integrated in nanophotonic circuits,” Appl. Phys. Lett., vol. 105, no. 25, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4901105

J. Riedrich-Möller, “Nanoimplantation and purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett., vol. 106, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4922117

N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349

P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274

H. Wang and I. Lekavicius, “Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0024001

K. Kuruma, “Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond,” Appl. Phys. Lett., vol. 118, no. 23, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0051675

J. P. Hadden, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett., vol. 97, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3519847

L. Marseglia, “Nanofabricated solid immersion lenses registered to single emitters in diamond,” Appl. Phys. Lett., vol. 98, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573870

L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299

E. Neu, “Photonic nano-structures on (111)-oriented diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4871580

N. T. Son, “Developing silicon carbide for quantum spintronics,” Appl. Phys. Lett., vol. 116, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0004454

Y. Chu and S. Gröblacher, “A perspective on hybrid quantum opto- and electromechanical systems,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0021088

P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548

H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216

L. Greuter, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4896415

D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458

P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948

K.-M. C. Fu, “Coupling of nitrogen-vacancy centers in diamond to a gap waveguide,” Appl. Phys. Lett., vol. 93, no. 23, 2008, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3045950

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378

H. A. Atikian, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4869574

S. A. Meynell, “Engineering quantum-coherent defects: The role of substrate miscut in chemical vapor deposition diamond growth,” Appl. Phys. Lett., vol. 117, no. 19, 2020, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0029715

S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971

B. Naydenov, “Increasing the coherence time of single electron spins in diamond by high temperature annealing,” Appl. Phys. Lett., vol. 97, no. 24, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3527975

K. Ohno, “Engineering shallow spins in diamond with nitrogen delta-doping,” Appl. Phys. Lett., vol. 101, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4748280

J. Meijer, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett., vol. 87, 2005, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2103389

F. Fávaro de Oliveira, “Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 107, no. 7, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4929356

K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135

T. Staudacher, “Enhancing the spin properties of shallow implanted nitrogen vacancy centers in diamond by epitaxial overgrowth,” Appl. Phys. Lett., vol. 101, no. 21, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4767144

J. Lang, “Long optical coherence times of shallow-implanted, negatively charged silicon vacancy centers in diamond,” Appl. Phys. Lett., vol. 116, no. 6, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/1.5143014

T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229

M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839

S. Cui and E. L. Hu, “Increased negatively charged nitrogen-vacancy centers in fluorinated diamond,” Appl. Phys. Lett., vol. 103, no. 5, 2013, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4817651

C. Osterkamp, “Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF$_{6}$ plasma treatment,” Appl. Phys. Lett., vol. 106, no. 11, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4915305

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242

H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720

Appl. Phys. Rev. (1)

G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075

Carbon (1)

C. Huang, “Anisotropy effects in diamond under nanoindentation,” Carbon, vol. 132, pp. 606–615, 2018. [Online]. Available: https://doi.org/10.1016/j.carbon.2018.02.066

Commun. Phys. (1)

K. Arai, “Millimetre-scale magnetocardiography of living rats with thoracotomy,” Commun. Phys., vol. 5, no. 1, pp. 1–10, 2022. [Online]. Available: https://doi.org/10.1038/s42005-022-00978-0

Diam. Relat. Mater. (1)

J. O. Orwa, “An upper limit on the lateral vacancy diffusion length in diamond,” Diam. Relat. Mater., vol. 24, 2012, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2012.02.009

Diamond Related Mater (1)

N. Manson and J. Harrison, “Photo-ionization of the nitrogen-vacancy center in diamond,” Diamond Related Mater., vol. 14, no. 10, pp. 1705–1710, 2005. [Online]. Available: https://doi.org/10.1016/j.diamond.2005.06.027

Diamond Related Mater. (5)

M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010

V. Sedov, “Growth of polycrystalline and single-crystal $\text {CVD}$ diamonds with bright photoluminescence of $\text {Ge-V}$ color centers using germane $\text {GeH}_{4}$ as the dopant source,” Diamond Related Mater., vol. 90, pp. 47–53, 2018. [Online]. Available: https://doi.org/10.1016/j.diamond.2018.10.001

F. C. Waldermann, “Creating diamond color centers for quantum optical applications,” Diamond Related Mater., vol. 16, pp. 1887–1895, 2007. [Online]. Available: https://doi.org/10.1016/j.diamond.2007.09.009

A. Lang, “The strain-optical constants of diamond: A brief history of measurements,” Diamond Related Mater., vol. 18, no. 1, pp. 1–5, 2009. [Online]. Available: https://doi.org/10.1016/j.diamond.2008.07.020

B. J. Hausmann, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Related Mater., vol. 19, no. 5, pp. 621–629, 2010. [Online]. Available: https://doi.org/10.1016/j.diamond.2010.01.011

Expert Rev. Mol. Diagn. (1)

R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291

Front. Phys. (1)

J. L. Webb, “Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals,” Front. Phys., vol. 8, 2020, Art. no. . [Online]. Available: https://doi.org/10.3389/fphy.2020.522536

J. Appl. Phys. (6)

K. O. Ho, “Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy ($\text {NV})$ center in diamond,” J. Appl. Phys., vol. 129, no. 24, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0052233

J. O. Orwa, “Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing,” J. Appl. Phys., vol. 109, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573768

S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187

A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735

S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577

M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534

J. Manuf. Mater. Process. (1)

A. Haque and S. Sumaiya, “An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation,” J. Manuf. Mater. Process., vol. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.3390/jmmp1010006

J. Mater. Chem. C (1)

E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H

J. Opt. (1)

D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd

J. Opt. Soc. Amer. B (2)

T. Schröder, “Quantum nanophotonics in diamond [Invited],” J. Opt. Soc. Amer. B, vol. 33, no. 4, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B65

B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234

J. Opt. Soc. America B (1)

M. Gould, “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. America B, vol. 33, no. 3, pp. B35–B42, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B35

J. Phys. B: Atomic, Mol. Opt. Phys. (1)

C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005

J. Phys. D: Appl. Phys. (1)

J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb

J. Phys.: Conf. Ser. (1)

C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys.: Conf. Ser., vol. 264, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1742-6596/264/1/012025

J. Physics: Condens. Matter (1)

H. Pinto and R. Jones, “Theory of the birefringence due to dislocations in single crystal CVD diamond,” J. Physics: Condens. Matter, vol. 21, no. 36, 2009, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0953-8984/21/36/364220

J. Physics: Photon. (1)

S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications,” J. Physics: Photon., vol. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/2515-7647/ab77a2

J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct. (1)

L. E. Ocola and A. Stein, “Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness,” J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct., vol. 24, no. 6, pp. 3061–3065, 2006. [Online]. Available: https://doi.org/10.1116/1.2366698

Laser Photon. Rev (1)

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .

Laser Phys. Lett. (1)

O. Lux, “Multi-octave frequency comb generation by $\chi$ (3)-nonlinear optical processes in CVD diamond at low temperatures,” Laser Phys. Lett., vol. 11, no. 8, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1612-2011/11/8/086101

Mater. Quantum Technol. (1)

A. M. Edmonds, “Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications,” Mater. Quantum Technol., vol. 1, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/0.1088/2633-4356/abd88a

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305

Micromachines (1)

M. Challier, “Advanced fabrication of single-crystal diamond membranes for quantum technologies,” Micromachines, vol. 9, 2018, Art. no. . [Online]. Available: https://doi.org/10.3390/mi9040148

MRS Bull. (1)

W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266

Nano Lett. (20)

I. Bayn, “Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks,” Nano Lett., vol. 15, pp. 1751–1758, 2015. [Online]. Available: https://doi.org/10.1021/nl504441m

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q

T. Ishikawa, “Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer,” Nano Lett., vol. 12, pp. 2083–2087, 2012. [Online]. Available: https://doi.org/10.1021/nl300350r

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346

J. L. Zhang, “Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers,” Nano Lett., vol. 16, no. 1, pp. 212–217, 2016. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b03515

B. J. Hausmann, “Coupling of $\text {NV}$ centers to photonic crystal nanobeams in diamond,” Nano Lett., vol. 13, pp. 5791–5796, 2013. [Online]. Available: https://doi.org/10.1021/nl402174g

D. Englund, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett., vol. 10, pp. 3922–3926, 2010. [Online]. Available: https://doi.org/10.1021/nl101662v

J. Riedrich-Möller, “Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond,” Nano Lett., vol. 14, no. 9, pp. 5281–5287, 2014. [Online]. Available: http://doi.org/10.1021/nl502327b

D. Chen, “Quantum interference of resonance fluorescence from Germanium-vacancy color centers in diamond,” Nano Lett., vol. 22, no. 15, pp. 6306–6312, 2022. [Online]. Available: https://doi.org/10.1021/acs.nanolett.2c01959

S. A. Momenzadeh, “Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers,” Nano Lett., vol. 15, pp. 165–169, 2015. [Online]. Available: https://doi.org/10.1021/nl503326t

A. E. Rugar, “Generation of tin-vacancy centers in diamond via shallow ion implantation and subsequent diamond overgrowth,” Nano Lett., vol. 20, pp. 1614–1619, 2020. [Online]. Available: https://doi.org/10.1021/acs.nanolett.9b04495

M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y

M. Pfender, “Protecting a diamond quantum memory by charge state control,” Nano Lett., vol. 17, no. 10, pp. 5931–5937, 2017. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b01796

M. V. Hauf, “Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures,” Nano Lett., vol. 14, no. 5, pp. 2359–2364, 2014. [Online]. Available: https://doi.org/10.1021/nl4047619

P. Neumann, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett., vol. 13, no. 6, pp. 2738–2742, 2013. [Online]. Available: https://doi.org/10.1021/nl401216y

Y. Chu, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett., vol. 14, pp. 1982–1986, 2014. [Online]. Available:https://doi.org/10.1021/nl404836p

M. Ruf, “Optically coherent nitrogen-vacancy centers in micrometer-thin etched diamond membranes,” Nano Lett., vol. 19, pp. 3987–3992, 2019. [Online]. Available: http://doi.org/10.1021/acs.nanolett.9b01316

E. R. Schmidgall, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett., vol. 18, pp. 1175–1179, 2018. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b04717

M. J. Burek, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett., vol. 12, no. 12, pp. 6084–6089, 2012. [Online]. Available: https://doi.org/10.1021/nl302541e

P. K. Shandilya, “Hexagonal boron nitride cavity optomechanics,” Nano Lett., vol. 19, no. 2, pp. 1343–1350, 2019. [Online]. Available: https://doi.org/10.1021/acs.nanolett.8b04956

Nanophotonics (2)

J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196

Á. Gali, “Ab initio theory of the nitrogen-vacancy center in diamond,” Nanophotonics, vol. 8, pp. 1907–1943, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0154

Nanoscale (1)

B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A

Nature (39)

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524

J. Teufel, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature, vol. 475, no. 7356, pp. 359–363, 2011. [Online]. Available: https://doi.org/10.1038/nature10261

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715

J. D. Cohen, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature, vol. 520, no. 7548, pp. 522–525, 2015. [Online]. Available: https://doi.org/10.1038/nature14349

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401

N. H. Wan, “Large-scale integration of artificial atoms in hybrid photonic circuits,” Nature, vol. 583, pp. 226–231, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2441-3

G. Waldherr, “Quantum error correction in a solid-state hybrid spin register,” Nature, vol. 506, pp. 204–207, 2014. [Online]. Available: http://doi.org/10.1038/nature12919

M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6

T. van Leent, “Entangling single atoms over 33 km telecom fibre,” Nature, vol. 607, no. 7917, pp. 69–73, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04764-4

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176

L. Egan, “Fault-tolerant control of an error-corrected qubit,” Nature, vol. 598, pp. 281–286, 2021. [Online]. Available: https://doi.org/10.1038/s41586-021-03928-y

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812

H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008. [Online]. Available: http://doi.org/10.1038/nature07127

F. Arute, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, 2019. [Online]. Available: http://doi.org/10.1038/s41586-019-1666-5

L. S. Madsen, “Quantum computational advantage with a programmable photonic processor,” Nature, vol. 606, pp. 75–81, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04725-x

J. Yin, “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2401-y

S. Ritter, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012. [Online]. Available: http://doi.org/10.1038/nature11023

S. Krinner, “Realizing repeated quantum error correction in a distance-three surface code,” Nature, vol. 605, no. 7911, pp. 669–674, 2022. [Online]. Available: http://doi.org/10.1038/s41586-022-04566-8

M. Zhong, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature, vol. 517, no. 7533, pp. 177–180, 2015. [Online]. Available: http://doi.org/10.1038/nature14025

J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9

M. H. Abobeih, “Fault-tolerant operation of a logical qubit in a diamond quantum processor,” Nature, vol. 606, pp. 884–889, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04819-6

E. Togan, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature, vol. 466, no. 7307, pp. 730–734, 2010. [Online]. Available: http://doi.org/10.1038/nature09256

H. Bernien, “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, pp. 86–90, May 2013. [Online]. Available: http://doi.org/10.1038/nature12016

B. Hensen, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–686, 2015. [Online]. Available: http://doi.org/10.1038/nature15759

P. C. Humphreys, “Deterministic delivery of remote entanglement on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273, 2018. [Online]. Available: http://doi.org/10.1038/s41586-018-0200-5

M. K. Bhaskar, “Experimental demonstration of memory-enhanced quantum communication,” Nature, vol. 580, pp. 60–64, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2103-5

S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y

D. L. Moehring, “Entanglement of single-atom quantum bits at a distance,” Nature, vol. 449, no. 7158, pp. 68–71, 2007. [Online]. Available: http://doi.org/10.1038/nature06118

D. Bluvstein, “A quantum processor based on coherent transport of entangled atom arrays,” Nature, vol. 604, pp. 451–456, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04592-6

T. M. Graham, “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer,” Nature, vol. 604, pp. 457–462, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04603-6

P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5

J. Chan, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011. [Online]. Available: http://www.nature.com/doifinder/10.1038/nature10461

D. Najer, “A gated quantum dot strongly coupled to an optical microcavity,” Nature, vol. 575, no. 7784, pp. 622–627, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1709-y

J. M. Fink, “Climbing the jaynes-cummings ladder and observing its $\sqrt{n}$ nonlinearity in a cavity qed system,” Nature, vol. 454, pp. 315–318, 2008. [Online]. Available: https://doi.org/10.1038/nature07112

Y. Yu, “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, no. 7794, pp. 240–245, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-1976-7

M. H. Abobeih, “Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor,” Nature, vol. 576, no. 7787, pp. 411–415, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1834-7

D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781

D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.

E. Boto, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, vol. 555, no. 7698, pp. 657–661, 2018. [Online]. Available: https://doi.org/10.1038/nature26147

Nature Commun. (32)

J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0

E. R. Eisenach, “Cavity-enhanced microwave readout of a solid-state spin sensor,” Nature Commun., vol. 12, no. 1, pp. 1–7, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-21256-7

M. Munsch, “Resonant driving of a single photon emitter embedded in a mechanical oscillator,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-017-00097-3

S. Maity, “Coherent acoustic control of a single silicon vacancy spin in diamond,” Nature Commun., vol. 11, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-019-13822-x

B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603

M. J. Degen, “Entanglement of dark electron-nuclear spin defects in diamond,” Nature Commun., vol. 12, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-021-23454-9

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429

J. E. Fröch, “Versatile direct-writing of dopants in a solid state host through recoil implantation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-020-18749-2

Y.-I. Sohn, “Controlling the coherence of a diamond spin qubit through its strain environment,” Nature Commun., vol. 9, no. 1, 2018, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-018-04340-3

T. Schröder, “Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15376

F. Fávaro de Oliveira, “Tailoring spin defects in diamond by lattice charging,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15409

B. Grotz, “Charge state manipulation of qubits in diamond,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1729

P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165

X. Rong, “Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions,” Nature Commun., vol. 6, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms9748

J. Cramer, “Repeated quantum error correction on a continuously encoded qubit by real-time feedback,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms11526

M. H. Abobeih, “One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment,” Nature Commun., vol. 9, 2018, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-018-04916-z

C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w

B. Pingault, “Coherent control of the silicon-vacancy spin in diamond,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15579

J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512

E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358

L. Rogers, “Multiple intrinsically identical single-photon emitters in the solid state,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms5739

F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201

D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x

L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850

M. J. Weaver, “Coherent optomechanical state transfer between disparate mechanical resonators,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-017-00968-9

C. Dory, “Inverse-designed diamond photonics,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-11343-1

L. Li, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms7173

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638

P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710

D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w

M. J. Burek, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6718

Nature Mater. (4)

G. Balasubramanian, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mater., vol. 8, no. 5, pp. 383–387, 2009. [Online]. Available: http://doi.org/10.1038/nmat2420

R. J. Warburton, “Single spins in self-assembled quantum dots,” Nature Mater., vol. 12, no. 6, pp. 483–493, 2013. [Online]. Available: https://doi.org/10.1038/nmat3585

A. Bourassa, “Entanglement and control of single nuclear spins in isotopically engineered silicon carbide,” Nature Mater., vol. 19, no. 12, pp. 1319–1325, 2020. [Online]. Available: https://doi.org/10.1038/s41563-020-00802-6

C. Babin, “Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence,” Nature Mater., vol. 21, no. 1, pp. 67–73, 2022. [Online]. Available: https://doi.org/10.1038/s41563-021-01148-3

Nature Nanotechnol. (12)

L. Zhai, “Quantum interference of identical photons from remote GaAs quantum dots,” Nature Nanotechnol., vol. 17, pp. 829–833, 2022. [Online]. Available: https://doi.org/10.1038/s41565-022-01131-2

M. Fuechsle, “A single-atom transistor,” Nature Nanotechnol., vol. 7, pp. 242–246, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.21

T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2

J. Riedrich-Möller, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nature Nanotechnol., vol. 7, pp. 69–74, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2011.190

T. M. Babinec, “A diamond nanowire single-photon source,” Nature Nanotechnol., vol. 5, pp. 195–199, 2010. [Online]. Available: http://doi.org/10.1038/nnano.2010.6

P. Maletinsky, “A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres,” Nature Nanotechnol., vol. 7, pp. 320–324, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.50

I. Yeo, “Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system,” Nature Nanotechnol., vol. 9, no. 2, pp. 106–110, 2014. [Online]. Available: https://doi.org/10.1038/nnano.2013.274

M. Wu, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nature Nanotechnol., vol. 12, no. 2, pp. 127–131, 2017. [Online]. Available: https://doi.org/10.1038/nnano.2016.226

D. Rugar, “Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor,” Nature Nanotechnol., vol. 10, pp. 120–124, 2015. [Online]. Available: http://doi.org/10.1038/nnano.2014.288

T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299

M. S. Grinolds, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nature Nanotechnol., vol. 9, pp. 279–284, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.30

N. Tomm, “A bright and fast source of coherent single photons,” Nature Nanotechnol., vol. 16, pp. 399–403, 2021. [Online]. Available: http://doi.org/10.1038/s41565-020-00831-x

Nature Photon. (12)

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186

Y.-C. Chen, “Laser writing of coherent colour centres in diamond,” Nature Photon., vol. 11, pp. 77–80, 2017. [Online]. Available: http://doi.org/10.1038/nphoton.2016.234

M. Kianinia and I. Aharonovich, “Diamond photonics is scaling up,” Nature Photon., vol. 14, pp. 599–600, 2020. [Online]. Available: https://doi.org/10.1038/s41566-020-0695-9

K. G. Lee, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photon., vol. 5, pp. 166–169, 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2010.312

W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52

B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72

R. Valivarthi, “Quantum teleportation across a metropolitan fibre network,” Nature Photon., vol. 10, pp. 676–680, 2016. [Online]. Available: http://doi.org/10.1038/nphoton.2016.180

N. Gisin and R. Thew, “Quantum communication,” Nature Photon., vol. 1, pp. 165–171, 2007. [Online]. Available: http://doi.org/10.1038/nphoton.2007.22

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2

J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229

T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nature Photon., vol. 8, pp. 356–363, May 2014. [Online]. Available: http://doi.org/10.1038/nphoton.2014.53

Nature Phys (1)

J. M. Taylor, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Phys., vol. 4, pp. 810–816, 2008. [Online]. Available: https://doi.org/10.1038/nphys1075

Nature Phys. (13)

D. Wang, “Turning a molecule into a coherent two-level quantum system,” Nature Phys., vol. 15, pp. 483–489, May 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0436-5

S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0

S. J. Whiteley, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nature Phys., vol. 15, no. 5, pp. 490–495, 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0420-0

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070

P. Kómár, “A quantum network of clocks,” Nature Phys., vol. 10, no. 8, pp. 582–587, 2014. [Online]. Available: http://doi.org/10.1038/nphys3000

A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z

P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3

F. Dolde, “Room-temperature entanglement between single defect spins in diamond,” Nature Phys., vol. 9, no. 3, pp. 139–143, 2013. [Online]. Available: http://doi.org/10.1038/nphys2545

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026

A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411

N. Hedrich, “Nanoscale mechanics of antiferromagnetic domain walls,” Nature Phys., vol. 17, pp. 574–577, 2021. [Online]. Available: http://doi.org/10.1038/s41567-020-01157-0

A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z

M. Forsch, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nature Phys., vol. 16, no. 1, pp. 69–74, 2020. [Online]. Available: https://doi.org/10.1038/s41567-019-0673-7

Nature Rev. Mater. (1)

F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88

New J. Phys. (15)

G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386

K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023

M. E. Trusheim and D. Englund, “Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond,” New J. Phys., vol. 18, no. 12, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/aa5040

B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535

S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024

J. Görlitz, “Spectroscopic investigations of negatively charged tin-vacancy centres in diamond,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab6631

A. Faraon, “Quantum photonic devices in single-crystal diamond,” New J. Phys., vol. 15, no. 2, 2013, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/15/2/025010

S. Johnson, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys., vol. 17, 2015, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/17/12/122003

M. Pinard and A. Dantan, “Quantum limits of photothermal and radiation pressure cooling of a movable mirror,” New J. Phys., vol. 10, no. 9, 2008, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/10/9/095012

I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018

K. D. Jahnke, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys., vol. 17, no. 4, 2015, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/17/4/043011

J. R. Maze, “Properties of nitrogen-vacancy centers in diamond: The group theoretic approach,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025025

L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013

A. Dietrich, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys., vol. 16, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/16/11/113019

Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb

NPJ Quantum Inf (1)

P. Andrich, “Long-range spin wave mediated control of defect qubits in nanodiamonds,” NPJ Quantum Inf., vol. 3, 2017, Art. no. . [Online]. Available: https://www.nature.com/articles/s41534-017-0029-z

NPJ Quantum Inf. (4)

V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3

T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4

Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8

M. Pompili, “Experimental demonstration of entanglement delivery using a quantum network stack,” NPJ Quantum Inf., vol. 8, 2022, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-022-00631-2

Opt. Exp. (15)

P. R. Dolan, “Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity,” Opt. Exp., vol. 26, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.26.007056

I. P. Radko, “Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond,” Opt. Exp., vol. 24, 2016, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.24.027715

E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956

F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236

R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950

M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217

C.-H. Lu, “Generation of octave-spanning supercontinuum by Raman-assisted four-wave mixing in single-crystal diamond,” Opt. Exp., vol. 22, no. 4, pp. 4075–4082, 2014. [Online]. Available: https://doi.org/10.1364/OE.22.004075

C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240

L. Marseglia, “Bright nanowire single photon source based on SiV centers in diamond,” Opt. Exp., vol. 26, no. 1, pp. 80–89, 2018. [Online]. Available: https://doi.org/10.1364/OE.26.000080

D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081

C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515

N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.

Opt. Lett (3)

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556

X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545

M. Povinelli, “Evanescent-wave bonding between optical waveguides,” Opt. Lett., vol. 30, no. 22, 2005, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.30.003042

Opt. Lett. (7)

M. Kasperczyk, A. Jorio, E. Neu, P. Maletinsky, and L. Novotny, “Stokes–anti-stokes correlations in diamond,” Opt. Lett., vol. 40, no. 10, pp. 2393–2396, 2015. [Online]. Available: https://doi.org/10.1364/OL.40.002393

Y. Okawachi, “Competition between Raman and Kerr effects in microresonator comb generation,” Opt. Lett., vol. 42, no. 14, pp. 2786–2789, 2017. [Online]. Available: https://doi.org/10.1364/OL.42.002786

G. Eesley and M. D. Levenson, “Coherent, nonlinear two-phonon Raman spectra of diamond,” Opt. Lett., vol. 3, no. 5, pp. 178–180, 1978. [Online]. Available: https://doi.org/10.1364/OL.3.000178

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318

J. P. Hadden, “Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.43.003586

G. Lin, “Dependence of quality factor on surface roughness in crystalline whispering-gallery mode resonators,” Opt. Lett., vol. 43, no. 3, pp. 495–498, 2018. [Online]. Available: https://doi.org/10.1364/OL.43.000495

Y. Rong, “Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation,” Opt. Lett., vol. 44, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.44.003793

Opt. Mater. Exp. (1)

T. Schröder, “Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation,” Opt. Mater. Exp., vol. 7, May 2017, Art. no. . [Online]. Available: https://doi.org/10.1364/OME.7.001514

Optica (12)

Y.-C. Chen, “Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield,” Optica, vol. 6, May 2019, Art. no. . [Online]. Available: http://doi.org/10.1364/OPTICA.6.000662

S. Flågan, P. Maletinsky, R. J. Warburton, and D. Riedel, “Microcavity platform for widely-tunable optical double resonance,” Optica, vol. 9, pp. 1197–1209, 2022. [Online]. Available: https://doi.org/10.1364/OPTICA.466003

X.-L. Chu, “Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter,” Optica, vol. 1, no. 4, pp. 203–208, 2014. [Online]. Available: http://doi.org/10.1364/OPTICA.1.000203

S. Chakravarthi, “Inverse-designed photon extractors for optically addressable defect qubits,” Optica, vol. 7, no. 12, pp. 1805–1811, 2020 . [Online]. Available: https://doi.org/10.1364/OPTICA.408611

C. Dong, J. Zhang, V. Fiore, and H. Wang, “Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes,” Optica, vol. 1, no. 6, pp. 425–428, 2014. [Online]. Available: https://doi.org/10.1364/OPTICA.1.000425

P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica, vol. 2, no. 11, pp. 924–928, 2015. [Online]. Available: https://doi.org/10.1364/OPTICA.2.000924

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica, vol. 1, no. 6, pp. 414–420, 2014. [Online]. Available: https://doi.org/10.1364/OPTICA.1.000414

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213

E. Janitz, M. K. Bhaskar, and L. Childress, “Cavity quantum electrodynamics with color centers in diamond,” Optica, vol. 7, no. 10, 2020, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.398628

M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, no. 9, pp. 963–970, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.000963

M. J. Burek, “Diamond optomechanical crystals,” Optica, vol. 3, no. 12, pp. 1404–1411, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.001404

Photon. Nanostructures-Fundam. Appl. (1)

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002

Phys. Rep. (2)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001

H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, 1946, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRev.69.674.2

Phys. Rev. A (7)

M. Woolley and A. Clerk, “Two-mode back-action-evading measurements in cavity optomechanics,” Phys. Rev. A, vol. 87, no. 6, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.87.063846

M. C. Kuzyk and H. Wang, “Controlling multimode optomechanical interactions via interference,” Phys. Rev. A, vol. 96, no. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.96.023860

Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801

S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A, vol. 71, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.71.060310

R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825

E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844

N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330

Phys. Rev. Appl. (17)

C. J. Stephen, “Deep three-dimensional solid-state qubit arrays with long-lived spin coherence,” Phys. Rev. Appl., vol. 12, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.12.064005

R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010

D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036

K. C. Wong, “Microscopic study of optically stable coherent color centers in diamond generated by high-temperature annealing,” Phys. Rev. Appl., vol. 18, no. 2, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.18.024044

J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044

G. Chatzidrosos, “Miniature cavity-enhanced diamond magnetometer,” Phys. Rev. Appl., vol. 8, no. 4, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.044019

S. Meesala, “Enhanced strain coupling of nitrogen-vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl., vol. 5, no. 3, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.034010

M. J. Burek, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl., vol. 8, pp. 1–10, 2017. [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.024026

N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001

H. Kaupp, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.054010

J. Benedikter, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl., vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.7.024031

R. Høy Jensen, “Cavity-enhanced photon emission from a single germanium-vacancy center in a diamond membrane,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.064016

M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049

D. Riedel, “Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond,” Phys. Rev. Appl., vol. 2, 2014, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.2.064011

S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031

Phys. Rev. B (20)

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303

S. Meesala, “Strain engineering of the silicon-vacancy center in diamond,” Phys. Rev. B, vol. 97, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.97.205444

A. Gali and J. R. Maze, “Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties,” Phys. Rev. B, vol. 88, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.88.235205

T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304

S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425

P. Siyushev, “Optical and microwave control of germanium-vacancy center spins in diamond,” Phys. Rev. B, vol. 96, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.96.081201

S. B. van Dam, “Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.161203

S. Häußler, “Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.165310

C. T. Nguyen, “An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond,” Phys. Rev. B, vol. 100, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.100.165428

A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102

V. P. Adiga, “Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators,” Phys. Rev. B, vol. 79, no. 24, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.79.245403

B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303

A. Dréau, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B, vol. 84, no. 19, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.84.195204

M. Kasperczyk, “Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures,” Phys. Rev. B, vol. 102, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.102.075312

M. E. Trusheim, “Lead-related quantum emitters in diamond,” Phys. Rev. B, vol. 99, no. 7, 2019, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.99.075430

B. Ofori-Okai, “Spin properties of very shallow nitrogen vacancy defects in diamond,” Phys. Rev. B, vol. 86, no. 8, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.86.081406

M. V. Hauf, “Chemical control of the charge state of nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 83, no. 8, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.83.081304

F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411

A. K. Tiwari, “Calculated electron affinity and stability of halogen-terminated diamond,” Phys. Rev. B, vol. 84, no. 24, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.84.245305

L. Rondin, “Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds,” Phys. Rev. B, vol. 82, no. 11, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.82.115449

Phys. Rev. Lett (8)

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801

A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201

Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503

L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902

Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603

A. Sipahigil, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.113602

Phys. Rev. Lett. (49)

A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404

J. Kölbl, “Initialization of single spin dressed states using shortcuts to adiabaticity,” Phys. Rev. Lett., vol. 122, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.090502

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501

J. N. Becker, “All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.053603

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604

A. Sipahigil, “Quantum interference of single photons from remote nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.143601

C. Hepp, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett., vol. 112, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.036405

L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402

D. Sukachev, “Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett., vol. 119, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.223602

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501

U. Wahl, “Direct structural identification and quantification of the split-vacancy configuration for implanted Sn in diamond,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.045301

E. N. Knall, “Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System,” Phys. Rev. Lett., vol. 129, no. 5, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.129.053603

R. Stockill, “Phase-tuned entangled state generation between distant spin qubits,” Phys. Rev. Lett., vol. 119, 2017, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.119.010503

A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601

A. K. Ekert, “Quantum cryptography based on bell's theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, 1991. [Online]. Available: https://doi.org/10.1103/PhysRevLett.67.661

S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506

S. Langenfeld, “Quantum teleportation between remote qubit memories with only a single photon as a resource,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.130502

L. Stephenson, “High-rate, high-fidelity entanglement of qubits across an elementary quantum network,” Phys. Rev. Lett., vol. 124, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.110501

Y. Wu, “Strong quantum computational advantage using a superconducting quantum processor,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.180501

S. L. Vittorio Giovannetti and L. Maccone, “Quantum metrology,” Phys. Rev. Lett., vol. 96, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.96.010401

S.-K. Liao, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.120.030501

D. Chen, “Optical gating of resonance fluorescence from a single germanium vacancy color center in diamond,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org10.1103/PhysRevLett.123.033602

S. Sun, “Cavity-enhanced Raman emission from a single color center in a solid,” Phys. Rev. Lett., vol. 121, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.121.083601

P. Tamarat, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett., vol. 97, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.97.083002

M. Bhaskar, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett., vol. 118, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.118.223603

L. J. Rogers, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.263602

A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601

C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401

A. Pontin, “Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system,” Phys. Rev. Lett., vol. 116, no. 10, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.103601

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604

E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602

A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603

A. Tchebotareva, “Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength,” Phys. Rev. Lett., vol. 123, no. 6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.063601

H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601

P. Magnard, “Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.260502

C. T. Nguyen, “Quantum network nodes based on diamond qubits with an efficient nanophotonic interface,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.183602

A. Pscherer, “Single-molecule vacuum Rabi splitting: Four-wave mixing and optical switching at the single-photon level,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.133603

M.-A. Lemonde, “Phonon networks with silicon-vacancy centers in diamond waveguides,” Phys. Rev. Lett., vol. 120, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.213603

T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602

V. V. Soshenko, “Nuclear spin gyroscope based on the nitrogen vacancy center in diamond,” Phys. Rev. Lett., vol. 126, no. 19, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.197702

F. Dolde, “Nanoscale detection of a single fundamental charge in ambient conditions using the $\text{NV}^-$ center in diamond,” Phys. Rev. Lett., vol. 112, no. 9, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.097603

M. E. Trusheim, “Transform-limited photons from a coherent tin-vacancy spin in diamond,” Phys. Rev. Lett., vol. 124, no. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.023602

V. M. Acosta, “Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, May 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.206401

Z. H. Zhang, “Optically detected magnetic resonance in neutral silicon vacancy centers in diamond via bound exciton states,” Phys. Rev. Lett., vol. 125, pp. 1–6, 2020. [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.237402

D. Levonian, “Optical entanglement of distinguishable quantum emitters,” Phys. Rev. Lett., vol. 128, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.128.213602

D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101

B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602

T. Iwasaki, “Tin-vacancy quantum emitters in diamond,” Phys. Rev. Lett., vol. 119, no. 25, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.253601

T. Unden, “Quantum metrology enhanced by repetitive quantum error correction,” Phys. Rev. Lett., vol. 116, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.230502

Phys. Rev. Res. (2)

Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263

O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214

Phys. Rev. X (14)

A. Reiserer, “Robust quantum-network memory using decoherence-protected subspaces of nuclear spins,” Phys. Rev. X, vol. 6, no. 2, 2016, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.6.021040

G. Thiering and A. Gali, “Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond,” Phys. Rev. X, vol. 8, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.8.021063

R. Debroux, “Quantum control of the tin-vacancy spin qubit in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.11.041041

S. Sangtawesin, “Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031052

S. L. Mouradian, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.031009

T. Wolf, “Subpicotesla diamond magnetometry,” Phys. Rev. X, vol. 5, no. 4, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041001

M. Wu, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.4.021052

B. Machielse, “Quantum interference of electromechanically stabilized emitters in nanophotonic devices,” Phys. Rev. X, vol. 9, no. 3, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031022

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060

B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051

P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007

A. E. Rugar, “Quantum photonic interface for tin-vacancy centers in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevX.11.031021

C. E. Bradley, “A ten-qubit solid-state spin register with quantum memory up to one minute,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031045

D. Riedel, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X, vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.7.031040

Phys. Today (1)

L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549

Physica Status Solidi (1)

A. Bolshakov, “Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane,” Physica Status Solidi (a), vol. 212, pp. 2525–2532, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532174

Physica Status Solidi (a) (1)

V. Sedov, “SiV color centers in Si-doped isotopically enriched $^{12}\text {C}$ and $^{13}\text {C}$ CVD diamonds,” Physica Status Solidi (a), vol. 214, 2017, Art. no. . [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/pssa.201700198

Physica Status Solidi Rapid Res. Lett (1)

J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354

Physica Status Solidi(a) (1)

P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494

Proc. Nat. Acad. Sci. (3)

C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106

J. F. Barry, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Nat. Acad. Sci., vol. 113, no. 49, pp. 14133–14138, 2016. [Online]. Available: https://doi.org/10.1073/pnas.1601513113

W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114

Prog. Quantum Electron. (1)

S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003

PRX Quantum (3)

D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102

M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314

A. Stolk, “Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers,” PRX Quantum, vol. 3, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.3.020359

Quantum Sci. Technol. (3)

M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed

N. Lauk, “Perspectives on quantum transduction,” Quantum Sci. Technol., vol. 5, no. 2, 2020, Art. no. . [Online]. Available: http://doi.org/10.1088/2058-9565/ab788a

J. V. Cady, “Diamond optomechanical crystals with embedded nitrogen-vacancy centers,” Quantum Sci. Technol., vol. 4, no. 2, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/ab043e

Rep. Prog. Phys. (3)

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503

P. Glover and P. Mansfield, “Limits to magnetic resonance microscopy,” Rep. Prog. Phys., vol. 65, no. 10, 2002, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/65/10/203

Rev. Mod. Phys (1)

J. F. Barry, “Sensitivity optimization for NV-diamond magnetometry,” Rev. Mod. Phys., vol. 92, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.92.015004

Rev. Modern Phys (1)

D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281

Rev. Modern Phys. (6)

L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Modern Phys., vol. 82, pp. 1209–1224, 2010. [Online]. Available: https://doi.org/10.1103/RevModPhys.82.1209

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Modern Phys., vol. 87, pp. 1379–1418, 2015. [Online]. Available: https://doi.org/10.1103/RevModPhys.87.1379

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145

R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391

Rev. Sci. Instrum. (2)

M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818

P. Appel, “Fabrication of all diamond scanning probes for nanoscale magnetometry,” Rev. Sci. Instrum., vol. 87, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4952953

Sci. Adv (1)

I. Bertelli, “Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator,” Sci. Adv., vol. 6, 2020, Art. no. . [Online]. Available: https://www.science.org/doi/10.1126/sciadv.abd3556

Sci. Adv. (3)

P. Kharel, “High-frequency cavity optomechanics using bulk acoustic phonons,” Sci. Adv., vol. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aav0582

G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192

L. Fan, “Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv., vol. 4, 2018, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aar4994

Sci. Rep. (3)

J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4

T. Iwasaki, “Germanium-vacancy single color centers in diamond,” Sci. Rep., vol. 5, no. 1, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/srep12882

M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462

Science (27)

L. Thiel, “Probing magnetism in 2D materials at the nanoscale with single-spin microscopy,” Science, vol. 364, pp. 973–976, 2019. [Online]. Available: https://www.science.org/doi/10.1126/science.aav6926

G. S. MacCabe, “Nano-acoustic resonator with ultralong phonon lifetime,” Science, vol. 370, no. 6518, pp. 840–843, 2020. [Online]. Available: https://doi.org/10.1126/science.abc7312

D. Cohen, “Magnetoencephalography: Detection of the brain's electrical activity with a superconducting magnetometer,” Science, vol. 175, no. 4022, pp. 664–666, 1972. [Online]. Available: https://doi.org/10.1126/science.175.4022.664

N. Aslam, “Nanoscale nuclear magnetic resonance with chemical resolution,” Science, vol. 357, no. 6346, pp. 67–71, 2017. [Online]. Available: https://doi.org/10.1126/science.aam8697

S. Schmitt, “Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor,” Science, vol. 356, no. 6340, pp. 832–837, 2017. [Online]. Available: https://doi.org/10.1126/science.aam5532

J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009

H. J. Mamin, “Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor,” Science, vol. 339, no. 6119, pp. 557–560, 2013. [Online]. Available: https://doi.org/10.1126/science.1231540

T. Staudacher, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)$^{3}$ sample volume,” Science, vol. 339, no. 6119, pp. 561–563, 2013. [Online]. Available: https://doi.org/10.1126/science.1231675

A. Bienfait, “Phonon-mediated quantum state transfer and remote qubit entanglement,” Science, vol. 364, no. 6438, pp. 368–371, 2019. [Online]. Available: https://doi.org/10.1126/science.aaw8415

L. Childress, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science, vol. 314, pp. 281–285, 2006. [Online]. Available: https://doi.org/10.1126/science.1131871

P. C. Maurer, “Room-temperature quantum bit memory exceeding one second,” Science, vol. 336, no. 6086, pp. 1283–1286, 2012. [Online]. Available: http://doi.org/10.1126/science.1220513

M. V. G. Dutt, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science, vol. 316, no. 5829, pp. 1312–1316, 2007. [Online]. Available: http://www.doi.org/10.1126/science.1139831

B. C. Rose, “Observation of an environmentally insensitive solid-state spin defect in diamond,” Science, vol. 361, pp. 60–63, 2018. [Online]. Available: https://www.doi.org/10.1126/science.aao0290

A. Sipahigil, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science, vol. 354, pp. 847–850, 2016. [Online]. Available: https://doi.org/10.1126/science.aah6875

C. P. Anderson, “Electrical and optical control of single spins integrated in scalable semiconductor devices,” Science, vol. 366, pp. 1225–1230, 2019. [Online]. Available: https://doi.org/doi/10.1126/science.aax9406

T. Zhong, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science, vol. 357, no. 6358, pp. 1392–1395, 2017. [Online]. Available: https://doi.org/10.1126/science.aan5959

J. Hofmann, “Heralded entanglement between widely separated atoms,” Science, vol. 336, no. 6090, pp. 72–75, 2012. [Online]. Available: https://doi.org/10.1126/science.1221856

S. Daiss, “A quantum-logic gate between distant quantum-network modules,” Science, vol. 371, no. 6529, pp. 614–617, 2021. [Online]. Available: https://doi.org/10.1126/science.abe3150

W. Pfaff, “Unconditional quantum teleportation between distant solid-state quantum bits,” Science, vol. 345, no. 6196, pp. 532–535, 2014. [Online]. Available: https://doi.org/10.1126/science.1253512

N. Kalb, “Entanglement distillation between solid-state quantum network nodes,” Science, vol. 356, no. 6341, pp. 928–932, 2017. [Online]. Available: http://doi.org/10.1126/science.aan0070

R. E. Evans, “Photon-mediated interactions between quantum emitters in a diamond nanocavity,” Science, vol. 362, pp. 662–665, 2018. [Online]. Available: https://doi.org/10.1126/science.aau4691

M. Pompili, “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, 2021. [Online]. Available: http://doi.org/10.1126/science.abg1919

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288

M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, pp. 1169–1174, 2013. [Online]. Available: https://doi.org/10.1126/science.1231930

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149

D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, pp. 255–261, 1995. [Online]. Available: https://doi.org/10.1126/science.270.5234.255

H.-S. Zhong, “Quantum computational advantage using photons,” Science, vol. 370, pp. 1460–1463, 2020. [Online]. Available: https://doi.org/10.1126/science.abe8770

Sensors Actuators A (1)

K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.

Small (1)

S. Pezzagna, “Nanoscale engineering and optical addressing of single spins in diamond,” Small, vol. 6, pp. 2117–2121, 2010. [Online]. Available: https://doi.org/10.1002/smll.201000902

Supercond. Sci. Technol. (1)

R. Körber, “SQUIDS in biomagnetism: A roadmap towards improved healthcare,” Supercond. Sci. Technol., vol. 29, no. 11, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/0953-2048/29/11/113001

Zeitschrift fur Physik (1)

W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik, vol. 9, pp. 349–352, 1922. [Online]. Available: http://doi.org/10.1007/BF01326983

Other (24)

G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863

M. E. Wandel, “Attenuation in silica-based optical fibers,” Ph.D. dissertation, DTU, 2006. [Online]. Available: https://orbit.dtu.dk/en/publications/attenuation-in-silica-based-optical-fibers

P.-J. Stas, “Robust multi-qubit quantum network node with integrated error detection,” 2022, arXiv:2207.13128. [Online]. Available: https://doi.org/10.48550/arXiv.2207.13128

D. M. Lukin, “Optical superradiance of a pair of color centers in an integrated silicon-carbide-on-insulator microresonator,” 2022, arXiv:2202.04845. [Online]. Available: https://doi.org/10.48550/arXiv.2202.04845

Z.-H. Zhang, “Neutral silicon vacancy centers in undoped diamond via surface control,” 2022, arXiv:2206.13698. [Online]. Available: http://arxiv.org/abs/2206.13698

J. N. Becker and E. Neu, “The silicon vacancy center in diamond,” vol. 103, pp. 201–235, 2020. [Online]. Available: https://doi.org/10.1016/bs.semsem.2020.04.001

H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999

A. Zaitsev, Optical Properties of Diamond. Berlin, Heidelberg, Germany: Springer-Verlag, 2001. [Online]. Available: https://doi.org/10.1007/978-3-662-04548-0

A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819

R. P. Mildren, Intrinsic Optical Properties of Diamond.Hoboken, NJ, USA: Wiley, 2013, pp. 1–34. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527648603.ch1

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9

N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077

P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1

D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036

J. Arjona Martínez, “Photonic indistinguishability of the tin-vacancy center in nanostructured diamond,” 2022, arXiv:2206.15239. [Online]. Available: https://doi.org/10.48550/arXiv.2206.15239

R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655

M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7

Z. Zhao, “Sub-nanotesla sensitivity at the nanoscale with a single spin,” 2022, arXiv:2205.04415. [Online]. Available: https://doi.org/10.48550/arXiv.2205.04415

B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362

A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066

P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14

L. Orphal-Kobin, “Optically coherent nitrogen-vacancy defect centers in diamond nanostructures,” 2022, arXiv:2203.05605. [Online]. Available: https://doi.org/10.48550/arXiv.2203.05605

Y. Narita, “Identical photons from multiple tin-vacancy centers in diamond,” 2022, arXiv:2208.06275. [Online]. Available: https://doi.org/10.48550/arXiv.2208.06275

H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved