References
- View by:
- Article Order
- Year
- Author
- Publication
-
W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik, vol. 9, pp. 349–352, 1922. [Online]. Available: http://doi.org/10.1007/BF01326983
-
D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, pp. 255–261, 1995. [Online]. Available: https://doi.org/10.1126/science.270.5234.255
-
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812
-
N. Gisin and R. Thew, “Quantum communication,” Nature Photon., vol. 1, pp. 165–171, 2007. [Online]. Available: http://doi.org/10.1038/nphoton.2007.22
-
H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008. [Online]. Available: http://doi.org/10.1038/nature07127
-
V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149
-
S. L. Vittorio Giovannetti and L. Maccone, “Quantum metrology,” Phys. Rev. Lett., vol. 96, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.96.010401
-
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002
-
F. Arute, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, 2019. [Online]. Available: http://doi.org/10.1038/s41586-019-1666-5
-
H.-S. Zhong, “Quantum computational advantage using photons,” Science, vol. 370, pp. 1460–1463, 2020. [Online]. Available: https://doi.org/10.1126/science.abe8770
-
Y. Wu, “Strong quantum computational advantage using a superconducting quantum processor,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.180501
-
L. S. Madsen, “Quantum computational advantage with a programmable photonic processor,” Nature, vol. 606, pp. 75–81, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04725-x
-
S.-K. Liao, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.120.030501
-
J. Yin, “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2401-y
-
P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165
-
L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Modern Phys., vol. 82, pp. 1209–1224, 2010. [Online]. Available: https://doi.org/10.1103/RevModPhys.82.1209
-
S. Ritter, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012. [Online]. Available: http://doi.org/10.1038/nature11023
-
A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Modern Phys., vol. 87, pp. 1379–1418, 2015. [Online]. Available: https://doi.org/10.1103/RevModPhys.87.1379
-
O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176
-
L. Stephenson, “High-rate, high-fidelity entanglement of qubits across an elementary quantum network,” Phys. Rev. Lett., vol. 124, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.110501
-
L. Egan, “Fault-tolerant control of an error-corrected qubit,” Nature, vol. 598, pp. 281–286, 2021. [Online]. Available: https://doi.org/10.1038/s41586-021-03928-y
-
S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506
-
S. Langenfeld, “Quantum teleportation between remote qubit memories with only a single photon as a resource,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.130502
-
T. van Leent, “Entangling single atoms over 33 km telecom fibre,” Nature, vol. 607, no. 7917, pp. 69–73, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04764-4
-
W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266
-
M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, pp. 1169–1174, 2013. [Online]. Available: https://doi.org/10.1126/science.1231930
-
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217
-
G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863
-
D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2
-
J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229
-
P. Kómár, “A quantum network of clocks,” Nature Phys., vol. 10, no. 8, pp. 582–587, 2014. [Online]. Available: http://doi.org/10.1038/nphys3000
-
A. K. Ekert, “Quantum cryptography based on bell's theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, 1991. [Online]. Available: https://doi.org/10.1103/PhysRevLett.67.661
-
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145
-
T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nature Photon., vol. 8, pp. 356–363, May 2014. [Online]. Available: http://doi.org/10.1038/nphoton.2014.53
-
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288
-
M. H. Abobeih, “Fault-tolerant operation of a logical qubit in a diamond quantum processor,” Nature, vol. 606, pp. 884–889, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04819-6
-
R. Valivarthi, “Quantum teleportation across a metropolitan fibre network,” Nature Photon., vol. 10, pp. 676–680, 2016. [Online]. Available: http://doi.org/10.1038/nphoton.2016.180
-
M. E. Wandel, “Attenuation in silica-based optical fibers,” Ph.D. dissertation, DTU, 2006. [Online]. Available: https://orbit.dtu.dk/en/publications/attenuation-in-silica-based-optical-fibers
-
W. Pfaff, “Unconditional quantum teleportation between distant solid-state quantum bits,” Science, vol. 345, no. 6196, pp. 532–535, 2014. [Online]. Available: https://doi.org/10.1126/science.1253512
-
N. Kalb, “Entanglement distillation between solid-state quantum network nodes,” Science, vol. 356, no. 6341, pp. 928–932, 2017. [Online]. Available: http://doi.org/10.1126/science.aan0070
-
R. E. Evans, “Photon-mediated interactions between quantum emitters in a diamond nanocavity,” Science, vol. 362, pp. 662–665, 2018. [Online]. Available: https://doi.org/10.1126/science.aau4691
-
M. K. Bhaskar, “Experimental demonstration of memory-enhanced quantum communication,” Nature, vol. 580, pp. 60–64, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2103-5
-
M. Pompili, “Experimental demonstration of entanglement delivery using a quantum network stack,” NPJ Quantum Inf., vol. 8, 2022, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-022-00631-2
-
P.-J. Stas, “Robust multi-qubit quantum network node with integrated error detection,” 2022, arXiv:2207.13128. [Online]. Available: https://doi.org/10.48550/arXiv.2207.13128
-
E. Togan, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature, vol. 466, no. 7307, pp. 730–734, 2010. [Online]. Available: http://doi.org/10.1038/nature09256
-
H. Bernien, “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, pp. 86–90, May 2013. [Online]. Available: http://doi.org/10.1038/nature12016
-
B. Hensen, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–686, 2015. [Online]. Available: http://doi.org/10.1038/nature15759
-
P. C. Humphreys, “Deterministic delivery of remote entanglement on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273, 2018. [Online]. Available: http://doi.org/10.1038/s41586-018-0200-5
-
M. Pompili, “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, 2021. [Online]. Available: http://doi.org/10.1126/science.abg1919
-
S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y
-
J. Hofmann, “Heralded entanglement between widely separated atoms,” Science, vol. 336, no. 6090, pp. 72–75, 2012. [Online]. Available: https://doi.org/10.1126/science.1221856
-
S. Daiss, “A quantum-logic gate between distant quantum-network modules,” Science, vol. 371, no. 6529, pp. 614–617, 2021. [Online]. Available: https://doi.org/10.1126/science.abe3150
-
D. L. Moehring, “Entanglement of single-atom quantum bits at a distance,” Nature, vol. 449, no. 7158, pp. 68–71, 2007. [Online]. Available: http://doi.org/10.1038/nature06118
-
D. Bluvstein, “A quantum processor based on coherent transport of entangled atom arrays,” Nature, vol. 604, pp. 451–456, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04592-6
-
T. M. Graham, “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer,” Nature, vol. 604, pp. 457–462, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04603-6
-
P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5
-
A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z
-
S. Krinner, “Realizing repeated quantum error correction in a distance-three surface code,” Nature, vol. 605, no. 7911, pp. 669–674, 2022. [Online]. Available: http://doi.org/10.1038/s41586-022-04566-8
-
R. J. Warburton, “Single spins in self-assembled quantum dots,” Nature Mater., vol. 12, no. 6, pp. 483–493, 2013. [Online]. Available: https://doi.org/10.1038/nmat3585
-
R. Stockill, “Phase-tuned entangled state generation between distant spin qubits,” Phys. Rev. Lett., vol. 119, 2017, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.119.010503
-
L. Zhai, “Quantum interference of identical photons from remote GaAs quantum dots,” Nature Nanotechnol., vol. 17, pp. 829–833, 2022. [Online]. Available: https://doi.org/10.1038/s41565-022-01131-2
-
M. Zhong, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature, vol. 517, no. 7533, pp. 177–180, 2015. [Online]. Available: http://doi.org/10.1038/nature14025
-
T. Zhong, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science, vol. 357, no. 6358, pp. 1392–1395, 2017. [Online]. Available: https://doi.org/10.1126/science.aan5959
-
A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601
-
C. P. Anderson, “Electrical and optical control of single spins integrated in scalable semiconductor devices,” Science, vol. 366, pp. 1225–1230, 2019. [Online]. Available: https://doi.org/doi/10.1126/science.aax9406
-
J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9
-
D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102
-
N. T. Son, “Developing silicon carbide for quantum spintronics,” Appl. Phys. Lett., vol. 116, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0004454
-
A. Bourassa, “Entanglement and control of single nuclear spins in isotopically engineered silicon carbide,” Nature Mater., vol. 19, no. 12, pp. 1319–1325, 2020. [Online]. Available: https://doi.org/10.1038/s41563-020-00802-6
-
G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192
-
C. Babin, “Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence,” Nature Mater., vol. 21, no. 1, pp. 67–73, 2022. [Online]. Available: https://doi.org/10.1038/s41563-021-01148-3
-
D. M. Lukin, “Optical superradiance of a pair of color centers in an integrated silicon-carbide-on-insulator microresonator,” 2022, arXiv:2202.04845. [Online]. Available: https://doi.org/10.48550/arXiv.2202.04845
-
A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031
-
C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys.: Conf. Ser., vol. 264, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1742-6596/264/1/012025
-
P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3
-
D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd
-
M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica, vol. 3, no. 9, pp. 963–970, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.000963
-
M. J. Burek, “Diamond optomechanical crystals,” Optica, vol. 3, no. 12, pp. 1404–1411, 2016. [Online]. Available: http://doi.org/10.1364/OPTICA.3.001404
-
N. Lauk, “Perspectives on quantum transduction,” Quantum Sci. Technol., vol. 5, no. 2, 2020, Art. no. . [Online]. Available: http://doi.org/10.1088/2058-9565/ab788a
-
Y. Chu and S. Gröblacher, “A perspective on hybrid quantum opto- and electromechanical systems,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0021088
-
L. Fan, “Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv., vol. 4, 2018, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aar4994
-
M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6
-
K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501
-
H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999
-
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2
-
X. Rong, “Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions,” Nature Commun., vol. 6, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms9748
-
Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb
-
I. Bayn, “Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks,” Nano Lett., vol. 15, pp. 1751–1758, 2015. [Online]. Available: https://doi.org/10.1021/nl504441m
-
M. Fuechsle, “A single-atom transistor,” Nature Nanotechnol., vol. 7, pp. 242–246, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.21
-
S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .
-
S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425
-
A. Zaitsev, Optical Properties of Diamond. Berlin, Heidelberg, Germany: Springer-Verlag, 2001. [Online]. Available: https://doi.org/10.1007/978-3-662-04548-0
-
I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501
-
L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549
-
T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304
-
G. Balasubramanian, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mater., vol. 8, no. 5, pp. 383–387, 2009. [Online]. Available: http://doi.org/10.1038/nmat2420
-
L. Childress, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science, vol. 314, pp. 281–285, 2006. [Online]. Available: https://doi.org/10.1126/science.1131871
-
P. C. Maurer, “Room-temperature quantum bit memory exceeding one second,” Science, vol. 336, no. 6086, pp. 1283–1286, 2012. [Online]. Available: http://doi.org/10.1126/science.1220513
-
C. E. Bradley, “A ten-qubit solid-state spin register with quantum memory up to one minute,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031045
-
F. Dolde, “Room-temperature entanglement between single defect spins in diamond,” Nature Phys., vol. 9, no. 3, pp. 139–143, 2013. [Online]. Available: http://doi.org/10.1038/nphys2545
-
M. V. G. Dutt, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science, vol. 316, no. 5829, pp. 1312–1316, 2007. [Online]. Available: http://www.doi.org/10.1126/science.1139831
-
G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026
-
D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q
-
P. R. Dolan, “Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity,” Opt. Exp., vol. 26, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.26.007056
-
E. N. Knall, “Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System,” Phys. Rev. Lett., vol. 129, no. 5, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.129.053603
-
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001
-
J. N. Becker and E. Neu, “The silicon vacancy center in diamond,” vol. 103, pp. 201–235, 2020. [Online]. Available: https://doi.org/10.1016/bs.semsem.2020.04.001
-
S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003
-
L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503
-
G. Waldherr, “Quantum error correction in a solid-state hybrid spin register,” Nature, vol. 506, pp. 204–207, 2014. [Online]. Available: http://doi.org/10.1038/nature12919
-
J. Cramer, “Repeated quantum error correction on a continuously encoded qubit by real-time feedback,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms11526
-
M. H. Abobeih, “One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment,” Nature Commun., vol. 9, 2018, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-018-04916-z
-
C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w
-
A. Gali and J. R. Maze, “Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties,” Phys. Rev. B, vol. 88, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.88.235205
-
U. Wahl, “Direct structural identification and quantification of the split-vacancy configuration for implanted Sn in diamond,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.045301
-
S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010
-
L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402
-
N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303
-
C. Hepp, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett., vol. 112, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.036405
-
B. C. Rose, “Observation of an environmentally insensitive solid-state spin defect in diamond,” Science, vol. 361, pp. 60–63, 2018. [Online]. Available: https://www.doi.org/10.1126/science.aao0290
-
Z.-H. Zhang, “Neutral silicon vacancy centers in undoped diamond via surface control,” 2022, arXiv:2206.13698. [Online]. Available: http://arxiv.org/abs/2206.13698
-
L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013
-
I. P. Radko, “Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond,” Opt. Exp., vol. 24, 2016, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.24.027715
-
D. Riedel, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X, vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.7.031040
-
T. Ishikawa, “Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer,” Nano Lett., vol. 12, pp. 2083–2087, 2012. [Online]. Available: https://doi.org/10.1021/nl300350r
-
E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358
-
L. Rogers, “Multiple intrinsically identical single-photon emitters in the solid state,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms5739
-
A. Sipahigil, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science, vol. 354, pp. 847–850, 2016. [Online]. Available: https://doi.org/10.1126/science.aah6875
-
E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956
-
A. Dietrich, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys., vol. 16, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/16/11/113019
-
D. Sukachev, “Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett., vol. 119, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.223602
-
S. Meesala, “Strain engineering of the silicon-vacancy center in diamond,” Phys. Rev. B, vol. 97, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.97.205444
-
K. D. Jahnke, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys., vol. 17, no. 4, 2015, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/17/4/043011
-
J. R. Maze, “Properties of nitrogen-vacancy centers in diamond: The group theoretic approach,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025025
-
G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075
-
N. Hedrich, “Nanoscale mechanics of antiferromagnetic domain walls,” Nature Phys., vol. 17, pp. 574–577, 2021. [Online]. Available: http://doi.org/10.1038/s41567-020-01157-0
-
P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548
-
J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512
-
J. N. Becker, “All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.053603
-
H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604
-
A. Sipahigil, “Quantum interference of single photons from remote nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.143601
-
A. Sipahigil, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.113602
-
A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404
-
Á. Gali, “Ab initio theory of the nitrogen-vacancy center in diamond,” Nanophotonics, vol. 8, pp. 1907–1943, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0154
-
F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501
-
B. Pingault, “Coherent control of the silicon-vacancy spin in diamond,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15579
-
A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411
-
J. Kölbl, “Initialization of single spin dressed states using shortcuts to adiabaticity,” Phys. Rev. Lett., vol. 122, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.090502
-
Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801
-
L. J. Rogers, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.263602
-
L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401
-
T. Schröder, “Quantum nanophotonics in diamond [Invited],” J. Opt. Soc. Amer. B, vol. 33, no. 4, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B65
-
E. Janitz, M. K. Bhaskar, and L. Childress, “Cavity quantum electrodynamics with color centers in diamond,” Optica, vol. 7, no. 10, 2020, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.398628
-
H. Wang and I. Lekavicius, “Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0024001
-
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391
-
A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213
-
M. Povinelli, “Evanescent-wave bonding between optical waveguides,” Opt. Lett., vol. 30, no. 22, 2005, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.30.003042
-
K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica, vol. 1, no. 6, pp. 414–420, 2014. [Online]. Available: https://doi.org/10.1364/OPTICA.1.000414
-
M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236
-
A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601
-
J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091
-
J. D. Cohen, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature, vol. 520, no. 7548, pp. 522–525, 2015. [Online]. Available: https://doi.org/10.1038/nature14349
-
A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z
-
A. G. Primo, “Accurate modeling and characterization of photothermal forces in optomechanics,” APL Photon., vol. 6, no. 8, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0055201
-
M. Pinard and A. Dantan, “Quantum limits of photothermal and radiation pressure cooling of a movable mirror,” New J. Phys., vol. 10, no. 9, 2008, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/10/9/095012
-
P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801
-
R. P. Mildren, Intrinsic Optical Properties of Diamond.Hoboken, NJ, USA: Wiley, 2013, pp. 1–34. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527648603.ch1
-
J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4
-
G. Eesley and M. D. Levenson, “Coherent, nonlinear two-phonon Raman spectra of diamond,” Opt. Lett., vol. 3, no. 5, pp. 178–180, 1978. [Online]. Available: https://doi.org/10.1364/OL.3.000178
-
R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950
-
M. Kasperczyk, A. Jorio, E. Neu, P. Maletinsky, and L. Novotny, “Stokes–anti-stokes correlations in diamond,” Opt. Lett., vol. 40, no. 10, pp. 2393–2396, 2015. [Online]. Available: https://doi.org/10.1364/OL.40.002393
-
Y. Okawachi, “Competition between Raman and Kerr effects in microresonator comb generation,” Opt. Lett., vol. 42, no. 14, pp. 2786–2789, 2017. [Online]. Available: https://doi.org/10.1364/OL.42.002786
-
M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217
-
C.-H. Lu, “Generation of octave-spanning supercontinuum by Raman-assisted four-wave mixing in single-crystal diamond,” Opt. Exp., vol. 22, no. 4, pp. 4075–4082, 2014. [Online]. Available: https://doi.org/10.1364/OE.22.004075
-
O. Lux, “Multi-octave frequency comb generation by $\chi$ (3)-nonlinear optical processes in CVD diamond at low temperatures,” Laser Phys. Lett., vol. 11, no. 8, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1612-2011/11/8/086101
-
P. Latawiec, V. Venkataraman, M. J. Burek, B. J. Hausmann, I. Bulu, and M. Lončar, “On-chip diamond Raman laser,” Optica, vol. 2, no. 11, pp. 924–928, 2015. [Online]. Available: https://doi.org/10.1364/OPTICA.2.000924
-
P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318
-
B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72
-
H. Pinto and R. Jones, “Theory of the birefringence due to dislocations in single crystal CVD diamond,” J. Physics: Condens. Matter, vol. 21, no. 36, 2009, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0953-8984/21/36/364220
-
A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819
-
Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638
-
V. P. Adiga, “Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators,” Phys. Rev. B, vol. 79, no. 24, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.79.245403
-
M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917
-
B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051
-
I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018
-
J. Riedrich-Möller, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nature Nanotechnol., vol. 7, pp. 69–74, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2011.190
-
I. Bayn, “Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks,” Appl. Phys. Lett., vol. 105, no. 21, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4902562
-
M. J. Burek, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6718
-
L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002
-
M. J. Burek, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl., vol. 8, pp. 1–10, 2017. [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.024026
-
S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118
-
J. V. Cady, “Diamond optomechanical crystals with embedded nitrogen-vacancy centers,” Quantum Sci. Technol., vol. 4, no. 2, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/ab043e
-
B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A
-
A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604
-
P. Rath, “Diamond electro-optomechanical resonators integrated in nanophotonic circuits,” Appl. Phys. Lett., vol. 105, no. 25, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4901105
-
J. Riedrich-Möller, “Nanoimplantation and purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett., vol. 106, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4922117
-
N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349
-
P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274
-
T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316
-
M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122
-
C. Huang, “Anisotropy effects in diamond under nanoindentation,” Carbon, vol. 132, pp. 606–615, 2018. [Online]. Available: https://doi.org/10.1016/j.carbon.2018.02.066
-
A. Lang, “The strain-optical constants of diamond: A brief history of measurements,” Diamond Related Mater., vol. 18, no. 1, pp. 1–5, 2009. [Online]. Available: https://doi.org/10.1016/j.diamond.2008.07.020
-
A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102
-
D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516
-
D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w
-
M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832
-
N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511
-
F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508
-
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524
-
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9
-
N. H. Wan, “Large-scale integration of artificial atoms in hybrid photonic circuits,” Nature, vol. 583, pp. 226–231, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2441-3
-
B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346
-
P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710
-
J. Teufel, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature, vol. 475, no. 7356, pp. 359–363, 2011. [Online]. Available: https://doi.org/10.1038/nature10261
-
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715
-
M. Woolley and A. Clerk, “Two-mode back-action-evading measurements in cavity optomechanics,” Phys. Rev. A, vol. 87, no. 6, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.87.063846
-
M. C. Kuzyk and H. Wang, “Controlling multimode optomechanical interactions via interference,” Phys. Rev. A, vol. 96, no. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.96.023860
-
C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401
-
A. Pontin, “Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system,” Phys. Rev. Lett., vol. 116, no. 10, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.103601
-
W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114
-
C. Dong, J. Zhang, V. Fiore, and H. Wang, “Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes,” Optica, vol. 1, no. 6, pp. 425–428, 2014. [Online]. Available: https://doi.org/10.1364/OPTICA.1.000425
-
P. Kharel, “High-frequency cavity optomechanics using bulk acoustic phonons,” Sci. Adv., vol. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aav0582
-
L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850
-
M. J. Weaver, “Coherent optomechanical state transfer between disparate mechanical resonators,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-017-00968-9
-
L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601
-
M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902
-
M. Forsch, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nature Phys., vol. 16, no. 1, pp. 69–74, 2020. [Online]. Available: https://doi.org/10.1038/s41567-019-0673-7
-
N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077
-
J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201
-
Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603
-
D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x
-
P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1
-
F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993
-
J. P. Hadden, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett., vol. 97, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3519847
-
D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036
-
M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818
-
L. Marseglia, “Nanofabricated solid immersion lenses registered to single emitters in diamond,” Appl. Phys. Lett., vol. 98, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573870
-
P. Siyushev, “Optical and microwave control of germanium-vacancy center spins in diamond,” Phys. Rev. B, vol. 96, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.96.081201
-
D. Chen, “Optical gating of resonance fluorescence from a single germanium vacancy color center in diamond,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org10.1103/PhysRevLett.123.033602
-
S. B. van Dam, “Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.161203
-
M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534
-
K. G. Lee, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photon., vol. 5, pp. 166–169, 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2010.312
-
L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299
-
D. Riedel, “Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond,” Phys. Rev. Appl., vol. 2, 2014, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.2.064011
-
X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545
-
X.-L. Chu, “Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter,” Optica, vol. 1, no. 4, pp. 203–208, 2014. [Online]. Available: http://doi.org/10.1364/OPTICA.1.000203
-
C. Dory, “Inverse-designed diamond photonics,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-11343-1
-
S. Chakravarthi, “Inverse-designed photon extractors for optically addressable defect qubits,” Optica, vol. 7, no. 12, pp. 1805–1811, 2020 . [Online]. Available: https://doi.org/10.1364/OPTICA.408611
-
T. M. Babinec, “A diamond nanowire single-photon source,” Nature Nanotechnol., vol. 5, pp. 195–199, 2010. [Online]. Available: http://doi.org/10.1038/nnano.2010.6
-
B. J. Hausmann, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Related Mater., vol. 19, no. 5, pp. 621–629, 2010. [Online]. Available: https://doi.org/10.1016/j.diamond.2010.01.011
-
L. Marseglia, “Bright nanowire single photon source based on SiV centers in diamond,” Opt. Exp., vol. 26, no. 1, pp. 80–89, 2018. [Online]. Available: https://doi.org/10.1364/OE.26.000080
-
E. Neu, “Photonic nano-structures on (111)-oriented diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4871580
-
S. A. Momenzadeh, “Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers,” Nano Lett., vol. 15, pp. 165–169, 2015. [Online]. Available: https://doi.org/10.1021/nl503326t
-
P. Maletinsky, “A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres,” Nature Nanotechnol., vol. 7, pp. 320–324, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.50
-
P. Appel, “Fabrication of all diamond scanning probes for nanoscale magnetometry,” Rev. Sci. Instrum., vol. 87, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4952953
-
N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007
-
D. Chen, “Quantum interference of resonance fluorescence from Germanium-vacancy color centers in diamond,” Nano Lett., vol. 22, no. 15, pp. 6306–6312, 2022. [Online]. Available: https://doi.org/10.1021/acs.nanolett.2c01959
-
J. Arjona Martínez, “Photonic indistinguishability of the tin-vacancy center in nanostructured diamond,” 2022, arXiv:2206.15239. [Online]. Available: https://doi.org/10.48550/arXiv.2206.15239
-
C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240
-
W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58
-
S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577
-
E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, 1946, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRev.69.674.2
-
D. Englund, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett., vol. 10, pp. 3922–3926, 2010. [Online]. Available: https://doi.org/10.1021/nl101662v
-
J. Riedrich-Möller, “Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond,” Nano Lett., vol. 14, no. 9, pp. 5281–5287, 2014. [Online]. Available: http://doi.org/10.1021/nl502327b
-
T. Jung, “Spin measurements of NV centers coupled to a photonic crystal cavity,” APL Photon., vol. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5120120
-
L. Li, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms7173
-
S. Sun, “Cavity-enhanced Raman emission from a single color center in a solid,” Phys. Rev. Lett., vol. 121, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.121.083601
-
C. T. Nguyen, “An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond,” Phys. Rev. B, vol. 100, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.100.165428
-
A. E. Rugar, “Quantum photonic interface for tin-vacancy centers in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevX.11.031021
-
K. Kuruma, “Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond,” Appl. Phys. Lett., vol. 118, no. 23, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0051675
-
M. Bhaskar, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett., vol. 118, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.118.223603
-
J. P. Hadden, “Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.43.003586
-
A. E. Rugar, “Narrow-linewidth tin-vacancy centers in a diamond waveguide,” ACS Photon., vol. 7, pp. 2356–2361, 2020. [Online]. Available: https://doi.org/10.1021/acsphotonics.0c00833
-
A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52
-
B. J. Hausmann, “Coupling of $\text {NV}$ centers to photonic crystal nanobeams in diamond,” Nano Lett., vol. 13, pp. 5791–5796, 2013. [Online]. Available: https://doi.org/10.1021/nl402174g
-
A. Faraon, “Quantum photonic devices in single-crystal diamond,” New J. Phys., vol. 15, no. 2, 2013, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/15/2/025010
-
P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007
-
M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001
-
M. Gould, “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. America B, vol. 33, no. 3, pp. B35–B42, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B35
-
J. L. Zhang, “Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers,” Nano Lett., vol. 16, no. 1, pp. 212–217, 2016. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b03515
-
K. G. Fehler, “Hybrid quantum photonics based on artificial atoms placed inside one hole of a photonic crystal cavity,” ACS Photon., vol. 8, pp. 2635–2641, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00530
-
S. Johnson, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys., vol. 17, 2015, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/17/12/122003
-
H. Kaupp, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.054010
-
J. Benedikter, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl., vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.7.024031
-
S. Häußler, “Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.165310
-
R. Høy Jensen, “Cavity-enhanced photon emission from a single germanium-vacancy center in a diamond membrane,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.064016
-
M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049
-
P. Tamarat, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett., vol. 97, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.97.083002
-
Y. Chu, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett., vol. 14, pp. 1982–1986, 2014. [Online]. Available:https://doi.org/10.1021/nl404836p
-
K. C. Wong, “Microscopic study of optically stable coherent color centers in diamond generated by high-temperature annealing,” Phys. Rev. Appl., vol. 18, no. 2, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.18.024044
-
M. Kasperczyk, “Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures,” Phys. Rev. B, vol. 102, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.102.075312
-
M. Ruf, “Optically coherent nitrogen-vacancy centers in micrometer-thin etched diamond membranes,” Nano Lett., vol. 19, pp. 3987–3992, 2019. [Online]. Available: http://doi.org/10.1021/acs.nanolett.9b01316
-
B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362
-
P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948
-
N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.
-
K.-M. C. Fu, “Coupling of nitrogen-vacancy centers in diamond to a gap waveguide,” Appl. Phys. Lett., vol. 93, no. 23, 2008, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3045950
-
K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023
-
S. L. Mouradian, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.031009
-
E. R. Schmidgall, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett., vol. 18, pp. 1175–1179, 2018. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b04717
-
P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556
-
D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721
-
L. Greuter, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4896415
-
D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458
-
D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036
-
N. Tomm, “A bright and fast source of coherent single photons,” Nature Nanotechnol., vol. 16, pp. 399–403, 2021. [Online]. Available: http://doi.org/10.1038/s41565-020-00831-x
-
E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844
-
S. Flågan, P. Maletinsky, R. J. Warburton, and D. Riedel, “Microcavity platform for widely-tunable optical double resonance,” Optica, vol. 9, pp. 1197–1209, 2022. [Online]. Available: https://doi.org/10.1364/OPTICA.466003
-
R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659
-
J. F. Barry, “Sensitivity optimization for NV-diamond magnetometry,” Rev. Mod. Phys., vol. 92, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.92.015004
-
V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801
-
P. Neumann, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett., vol. 13, no. 6, pp. 2738–2742, 2013. [Online]. Available: https://doi.org/10.1021/nl401216y
-
K. O. Ho, “Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy ($\text {NV})$ center in diamond,” J. Appl. Phys., vol. 129, no. 24, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0052233
-
M. E. Trusheim and D. Englund, “Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond,” New J. Phys., vol. 18, no. 12, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/aa5040
-
V. V. Soshenko, “Nuclear spin gyroscope based on the nitrogen vacancy center in diamond,” Phys. Rev. Lett., vol. 126, no. 19, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.197702
-
F. Dolde, “Nanoscale detection of a single fundamental charge in ambient conditions using the $\text{NV}^-$ center in diamond,” Phys. Rev. Lett., vol. 112, no. 9, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.097603
-
M. S. Grinolds, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nature Nanotechnol., vol. 9, pp. 279–284, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.30
-
D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781
-
D. Rugar, “Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor,” Nature Nanotechnol., vol. 10, pp. 120–124, 2015. [Online]. Available: http://doi.org/10.1038/nnano.2014.288
-
T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299
-
P. Glover and P. Mansfield, “Limits to magnetic resonance microscopy,” Rep. Prog. Phys., vol. 65, no. 10, 2002, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/65/10/203
-
C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106
-
M. H. Abobeih, “Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor,” Nature, vol. 576, no. 7787, pp. 411–415, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1834-7
-
H. J. Mamin, “Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor,” Science, vol. 339, no. 6119, pp. 557–560, 2013. [Online]. Available: https://doi.org/10.1126/science.1231540
-
T. Staudacher, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)$^{3}$ sample volume,” Science, vol. 339, no. 6119, pp. 561–563, 2013. [Online]. Available: https://doi.org/10.1126/science.1231675
-
J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0
-
N. Aslam, “Nanoscale nuclear magnetic resonance with chemical resolution,” Science, vol. 357, no. 6346, pp. 67–71, 2017. [Online]. Available: https://doi.org/10.1126/science.aam8697
-
S. Schmitt, “Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor,” Science, vol. 356, no. 6340, pp. 832–837, 2017. [Online]. Available: https://doi.org/10.1126/science.aam5532
-
J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009
-
F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88
-
J. F. Barry, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Nat. Acad. Sci., vol. 113, no. 49, pp. 14133–14138, 2016. [Online]. Available: https://doi.org/10.1073/pnas.1601513113
-
M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed
-
D. Cohen, “Magnetoencephalography: Detection of the brain's electrical activity with a superconducting magnetometer,” Science, vol. 175, no. 4022, pp. 664–666, 1972. [Online]. Available: https://doi.org/10.1126/science.175.4022.664
-
R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291
-
R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655
-
R. Körber, “SQUIDS in biomagnetism: A roadmap towards improved healthcare,” Supercond. Sci. Technol., vol. 29, no. 11, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/0953-2048/29/11/113001
-
E. Boto, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, vol. 555, no. 7698, pp. 657–661, 2018. [Online]. Available: https://doi.org/10.1038/nature26147
-
K. Arai, “Millimetre-scale magnetocardiography of living rats with thoracotomy,” Commun. Phys., vol. 5, no. 1, pp. 1–10, 2022. [Online]. Available: https://doi.org/10.1038/s42005-022-00978-0
-
H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216
-
J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044
-
J. L. Webb, “Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals,” Front. Phys., vol. 8, 2020, Art. no. . [Online]. Available: https://doi.org/10.3389/fphy.2020.522536
-
J. M. Taylor, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Phys., vol. 4, pp. 810–816, 2008. [Online]. Available: https://doi.org/10.1038/nphys1075
-
A. Dréau, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B, vol. 84, no. 19, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.84.195204
-
G. Chatzidrosos, “Miniature cavity-enhanced diamond magnetometer,” Phys. Rev. Appl., vol. 8, no. 4, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.044019
-
E. R. Eisenach, “Cavity-enhanced microwave readout of a solid-state spin sensor,” Nature Commun., vol. 12, no. 1, pp. 1–7, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-21256-7
-
T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602
-
A. M. Edmonds, “Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications,” Mater. Quantum Technol., vol. 1, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/0.1088/2633-4356/abd88a
-
Z. Zhao, “Sub-nanotesla sensitivity at the nanoscale with a single spin,” 2022, arXiv:2205.04415. [Online]. Available: https://doi.org/10.48550/arXiv.2205.04415
-
T. Wolf, “Subpicotesla diamond magnetometry,” Phys. Rev. X, vol. 5, no. 4, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041001
-
M. Wu, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.4.021052
-
M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7
-
J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb
-
M. Wu, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nature Nanotechnol., vol. 12, no. 2, pp. 127–131, 2017. [Online]. Available: https://doi.org/10.1038/nnano.2016.226
-
G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386
-
P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640
-
A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201
-
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.
-
G. S. MacCabe, “Nano-acoustic resonator with ultralong phonon lifetime,” Science, vol. 370, no. 6518, pp. 840–843, 2020. [Online]. Available: https://doi.org/10.1126/science.abc7312
-
B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303
-
I. Bertelli, “Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator,” Sci. Adv., vol. 6, 2020, Art. no. . [Online]. Available: https://www.science.org/doi/10.1126/sciadv.abd3556
-
L. Thiel, “Probing magnetism in 2D materials at the nanoscale with single-spin microscopy,” Science, vol. 364, pp. 973–976, 2019. [Online]. Available: https://www.science.org/doi/10.1126/science.aav6926
-
H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601
-
B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535
-
H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002
-
D. Kikuchi, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Exp., vol. 10, 2017, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.7567/APEX.10.103004
-
P. Andrich, “Long-range spin wave mediated control of defect qubits in nanodiamonds,” NPJ Quantum Inf., vol. 3, 2017, Art. no. . [Online]. Available: https://www.nature.com/articles/s41534-017-0029-z
-
M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314
-
P. Magnard, “Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.260502
-
D. Najer, “A gated quantum dot strongly coupled to an optical microcavity,” Nature, vol. 575, no. 7784, pp. 622–627, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1709-y
-
S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photon., vol. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4978204
-
B. Machielse, “Quantum interference of electromechanically stabilized emitters in nanophotonic devices,” Phys. Rev. X, vol. 9, no. 3, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031022
-
A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603
-
J. M. Fink, “Climbing the jaynes-cummings ladder and observing its $\sqrt{n}$ nonlinearity in a cavity qed system,” Nature, vol. 454, pp. 315–318, 2008. [Online]. Available: https://doi.org/10.1038/nature07112
-
D. Wang, “Turning a molecule into a coherent two-level quantum system,” Nature Phys., vol. 15, pp. 483–489, May 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0436-5
-
A. Pscherer, “Single-molecule vacuum Rabi splitting: Four-wave mixing and optical switching at the single-photon level,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.133603
-
I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186
-
C. T. Nguyen, “Quantum network nodes based on diamond qubits with an efficient nanophotonic interface,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.183602
-
S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A, vol. 71, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.71.060310
-
L. Orphal-Kobin, “Optically coherent nitrogen-vacancy defect centers in diamond nanostructures,” 2022, arXiv:2203.05605. [Online]. Available: https://doi.org/10.48550/arXiv.2203.05605
-
A. Tchebotareva, “Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength,” Phys. Rev. Lett., vol. 123, no. 6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.063601
-
V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3
-
Y. Yu, “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, no. 7794, pp. 240–245, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-1976-7
-
S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0
-
P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14
-
D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281
-
A. Bienfait, “Phonon-mediated quantum state transfer and remote qubit entanglement,” Science, vol. 364, no. 6438, pp. 368–371, 2019. [Online]. Available: https://doi.org/10.1126/science.aaw8415
-
I. Yeo, “Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system,” Nature Nanotechnol., vol. 9, no. 2, pp. 106–110, 2014. [Online]. Available: https://doi.org/10.1038/nnano.2013.274
-
M. Munsch, “Resonant driving of a single photon emitter embedded in a mechanical oscillator,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-017-00097-3
-
R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825
-
E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602
-
D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060
-
S. Maity, “Coherent acoustic control of a single silicon vacancy spin in diamond,” Nature Commun., vol. 11, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-019-13822-x
-
S. J. Whiteley, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nature Phys., vol. 15, no. 5, pp. 490–495, 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0420-0
-
O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070
-
B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603
-
J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503
-
S. Meesala, “Enhanced strain coupling of nitrogen-vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl., vol. 5, no. 3, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.034010
-
P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429
-
J. Chan, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011. [Online]. Available: http://www.nature.com/doifinder/10.1038/nature10461
-
M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999
-
P. K. Shandilya, “Hexagonal boron nitride cavity optomechanics,” Nano Lett., vol. 19, no. 2, pp. 1343–1350, 2019. [Online]. Available: https://doi.org/10.1021/acs.nanolett.8b04956
-
A. Das, “Demonstration of hybrid high-Q hexagonal boron nitride microresonators,” ACS Photon., vol. 8, no. 10, pp. 3027–3033, 2021.
-
S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications,” J. Physics: Photon., vol. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/2515-7647/ab77a2
-
X. Yan, “Silicon photonic quantum computing with spin qubits,” APL Photon., vol. 6, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0049372
-
Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502
-
M. J. Degen, “Entanglement of dark electron-nuclear spin defects in diamond,” Nature Commun., vol. 12, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-021-23454-9
-
T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4
-
M.-A. Lemonde, “Phonon networks with silicon-vacancy centers in diamond waveguides,” Phys. Rev. Lett., vol. 120, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.213603
-
A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066
-
S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7
-
P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494
-
G. Lin, “Dependence of quality factor on surface roughness in crystalline whispering-gallery mode resonators,” Opt. Lett., vol. 43, no. 3, pp. 495–498, 2018. [Online]. Available: https://doi.org/10.1364/OL.43.000495
-
M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378
-
M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515
-
H. A. Atikian, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4869574
-
C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826
-
L. E. Ocola and A. Stein, “Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness,” J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct., vol. 24, no. 6, pp. 3061–3065, 2006. [Online]. Available: https://doi.org/10.1116/1.2366698
-
K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.
-
L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501
-
H. A. Atikian, “Freestanding nanostructures via reactive ion beam angled etching,” APL Photon., vol. 2, no. 5, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4982603
-
M. J. Burek, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett., vol. 12, no. 12, pp. 6084–6089, 2012. [Online]. Available: https://doi.org/10.1021/nl302541e
-
F. C. Waldermann, “Creating diamond color centers for quantum optical applications,” Diamond Related Mater., vol. 16, pp. 1887–1895, 2007. [Online]. Available: https://doi.org/10.1016/j.diamond.2007.09.009
-
S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024
-
J. O. Orwa, “Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing,” J. Appl. Phys., vol. 109, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573768
-
J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196
-
B. Naydenov, “Increasing the coherence time of single electron spins in diamond by high temperature annealing,” Appl. Phys. Lett., vol. 97, no. 24, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3527975
-
K. Ohno, “Engineering shallow spins in diamond with nitrogen delta-doping,” Appl. Phys. Lett., vol. 101, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4748280
-
I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater., vol. 2, pp. 911–928, 2014. [Online]. Available: http://doi.org/10.1002/adom.201400189
-
S. A. Meynell, “Engineering quantum-coherent defects: The role of substrate miscut in chemical vapor deposition diamond growth,” Appl. Phys. Lett., vol. 117, no. 19, 2020, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0029715
-
A. Bolshakov, “Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane,” Physica Status Solidi (a), vol. 212, pp. 2525–2532, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532174
-
V. Sedov, “SiV color centers in Si-doped isotopically enriched $^{12}\text {C}$ and $^{13}\text {C}$ CVD diamonds,” Physica Status Solidi (a), vol. 214, 2017, Art. no. . [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/pssa.201700198
-
V. Sedov, “Growth of polycrystalline and single-crystal $\text {CVD}$ diamonds with bright photoluminescence of $\text {Ge-V}$ color centers using germane $\text {GeH}_{4}$ as the dopant source,” Diamond Related Mater., vol. 90, pp. 47–53, 2018. [Online]. Available: https://doi.org/10.1016/j.diamond.2018.10.001
-
J. Meijer, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett., vol. 87, 2005, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2103389
-
A. Haque and S. Sumaiya, “An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation,” J. Manuf. Mater. Process., vol. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.3390/jmmp1010006
-
C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005
-
R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010
-
T. Iwasaki, “Germanium-vacancy single color centers in diamond,” Sci. Rep., vol. 5, no. 1, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/srep12882
-
S. D. Tchernij, “Single-photon-emitting optical centers in diamond fabricated upon sn implantation,” ACS Photon., vol. 4, no. 10, pp. 2580–2586, 2017. [Online]. Available: http://doi.org/10.1021/acsphotonics.7b00904
-
J. Görlitz, “Spectroscopic investigations of negatively charged tin-vacancy centres in diamond,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab6631
-
Y. Narita, “Identical photons from multiple tin-vacancy centers in diamond,” 2022, arXiv:2208.06275. [Online]. Available: https://doi.org/10.48550/arXiv.2208.06275
-
S. D. Tchernij, “Single-photon emitters in lead-implanted single-crystal diamond,” ACS Photon., vol. 5, pp. 4864–4871, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.8b01013
-
M. E. Trusheim, “Lead-related quantum emitters in diamond,” Phys. Rev. B, vol. 99, no. 7, 2019, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.99.075430
-
T. Iwasaki, “Tin-vacancy quantum emitters in diamond,” Phys. Rev. Lett., vol. 119, no. 25, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.253601
-
A. E. Rugar, “Generation of tin-vacancy centers in diamond via shallow ion implantation and subsequent diamond overgrowth,” Nano Lett., vol. 20, pp. 1614–1619, 2020. [Online]. Available: https://doi.org/10.1021/acs.nanolett.9b04495
-
S. Pezzagna, “Nanoscale engineering and optical addressing of single spins in diamond,” Small, vol. 6, pp. 2117–2121, 2010. [Online]. Available: https://doi.org/10.1002/smll.201000902
-
S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971
-
S. Tamura, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Exp., vol. 7, no. 11, 2014, Art. no. . [Online]. Available: http://doi.org/10.7567/APEX.7.115201
-
T. Schröder, “Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15376
-
T. Schröder, “Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation,” Opt. Mater. Exp., vol. 7, May 2017, Art. no. . [Online]. Available: https://doi.org/10.1364/OME.7.001514
-
Y.-C. Chen, “Laser writing of coherent colour centres in diamond,” Nature Photon., vol. 11, pp. 77–80, 2017. [Online]. Available: http://doi.org/10.1038/nphoton.2016.234
-
S. M. Eaton, “Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation,” Adv. Quantum Technol., vol. 2, no. 5/6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900006
-
C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305
-
Y.-C. Chen, “Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield,” Optica, vol. 6, May 2019, Art. no. . [Online]. Available: http://doi.org/10.1364/OPTICA.6.000662
-
C. J. Stephen, “Deep three-dimensional solid-state qubit arrays with long-lived spin coherence,” Phys. Rev. Appl., vol. 12, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.12.064005
-
V. Yurgens, “Low-charge-noise nitrogen-vacancy centers in diamond created using laser writing with a solid-immersion lens,” ACS Photon., vol. 8, pp. 1726–1734, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00274
-
Y. Rong, “Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation,” Opt. Lett., vol. 44, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.44.003793
-
F. Fávaro de Oliveira, “Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 107, no. 7, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4929356
-
B. Ofori-Okai, “Spin properties of very shallow nitrogen vacancy defects in diamond,” Phys. Rev. B, vol. 86, no. 8, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.86.081406
-
B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602
-
K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135
-
F. Fávaro de Oliveira, “Tailoring spin defects in diamond by lattice charging,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15409
-
D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101
-
S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187
-
Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263
-
S. Sangtawesin, “Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031052
-
T. Staudacher, “Enhancing the spin properties of shallow implanted nitrogen vacancy centers in diamond by epitaxial overgrowth,” Appl. Phys. Lett., vol. 101, no. 21, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4767144
-
J. Lang, “Long optical coherence times of shallow-implanted, negatively charged silicon vacancy centers in diamond,” Appl. Phys. Lett., vol. 116, no. 6, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/1.5143014
-
M. V. Hauf, “Chemical control of the charge state of nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 83, no. 8, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.83.081304
-
B. Grotz, “Charge state manipulation of qubits in diamond,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1729
-
M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y
-
T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229
-
V. Petráková, “Luminescence of nanodiamond driven by atomic functionalization: Towards novel detection principles,” Adv. Funct. Mater., vol. 22, no. 4, pp. 812–819, 2012. [Online]. Available: https://doi.org/10.1002/adfm.201101936
-
A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735
-
M. Pfender, “Protecting a diamond quantum memory by charge state control,” Nano Lett., vol. 17, no. 10, pp. 5931–5937, 2017. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b01796
-
M. V. Hauf, “Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures,” Nano Lett., vol. 14, no. 5, pp. 2359–2364, 2014. [Online]. Available: https://doi.org/10.1021/nl4047619
-
M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839
-
S. Cui and E. L. Hu, “Increased negatively charged nitrogen-vacancy centers in fluorinated diamond,” Appl. Phys. Lett., vol. 103, no. 5, 2013, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4817651
-
C. Osterkamp, “Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF$_{6}$ plasma treatment,” Appl. Phys. Lett., vol. 106, no. 11, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4915305
-
F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411
-
A. K. Tiwari, “Calculated electron affinity and stability of halogen-terminated diamond,” Phys. Rev. B, vol. 84, no. 24, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.84.245305
-
L. Rondin, “Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds,” Phys. Rev. B, vol. 82, no. 11, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.82.115449
-
R. Tsukahara, “Removing non-size-dependent electron spin decoherence of nanodiamond quantum sensors by aerobic oxidation,” ACS Appl. Nano Mater., vol. 2, no. 6, pp. 3701–3710, 2019. [Online]. Available: http://doi.org/10.1021/acsanm.9b00614
-
E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H
-
V. M. Acosta, “Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, May 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.206401
-
Z. H. Zhang, “Optically detected magnetic resonance in neutral silicon vacancy centers in diamond via bound exciton states,” Phys. Rev. Lett., vol. 125, pp. 1–6, 2020. [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.237402
-
M. Nguyen, “Photodynamics and quantum efficiency of germanium vacancy color centers in diamond,” Adv. Photon., vol. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1117/1.AP.1.6.066002
-
M. E. Trusheim, “Transform-limited photons from a coherent tin-vacancy spin in diamond,” Phys. Rev. Lett., vol. 124, no. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.023602
-
J. E. Fröch, “Versatile direct-writing of dopants in a solid state host through recoil implantation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-020-18749-2
-
P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840
-
G. Thiering and A. Gali, “Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond,” Phys. Rev. X, vol. 8, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.8.021063
-
R. Debroux, “Quantum control of the tin-vacancy spin qubit in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.11.041041
-
Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8
-
J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354
-
M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010
-
N. Manson and J. Harrison, “Photo-ionization of the nitrogen-vacancy center in diamond,” Diamond Related Mater., vol. 14, no. 10, pp. 1705–1710, 2005. [Online]. Available: https://doi.org/10.1016/j.diamond.2005.06.027
-
J. O. Orwa, “An upper limit on the lateral vacancy diffusion length in diamond,” Diam. Relat. Mater., vol. 24, 2012, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2012.02.009
-
Y.-I. Sohn, “Controlling the coherence of a diamond spin qubit through its strain environment,” Nature Commun., vol. 9, no. 1, 2018, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-018-04340-3
-
A. Stolk, “Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers,” PRX Quantum, vol. 3, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.3.020359
-
A. Reiserer, “Robust quantum-network memory using decoherence-protected subspaces of nuclear spins,” Phys. Rev. X, vol. 6, no. 2, 2016, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.6.021040
-
N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330
-
O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214
-
D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242
-
D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081
-
B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234
-
D. Levonian, “Optical entanglement of distinguishable quantum emitters,” Phys. Rev. Lett., vol. 128, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.128.213602
-
H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888
-
T. Unden, “Quantum metrology enhanced by repetitive quantum error correction,” Phys. Rev. Lett., vol. 116, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.230502
-
M. Kianinia and I. Aharonovich, “Diamond photonics is scaling up,” Nature Photon., vol. 14, pp. 599–600, 2020. [Online]. Available: https://doi.org/10.1038/s41566-020-0695-9
-
M. Challier, “Advanced fabrication of single-crystal diamond membranes for quantum technologies,” Micromachines, vol. 9, 2018, Art. no. . [Online]. Available: https://doi.org/10.3390/mi9040148
-
M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462
-
R. Nelz, “Toward wafer-scale diamond nano- and quantum technologies,” APL Mater., vol. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5067267
-
H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720
2022 (40)
L. S. Madsen, “Quantum computational advantage with a programmable photonic processor,” Nature, vol. 606, pp. 75–81, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04725-x
T. van Leent, “Entangling single atoms over 33 km telecom fibre,” Nature, vol. 607, no. 7917, pp. 69–73, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04764-4
M. H. Abobeih, “Fault-tolerant operation of a logical qubit in a diamond quantum processor,” Nature, vol. 606, pp. 884–889, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04819-6
M. Pompili, “Experimental demonstration of entanglement delivery using a quantum network stack,” NPJ Quantum Inf., vol. 8, 2022, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-022-00631-2
P.-J. Stas, “Robust multi-qubit quantum network node with integrated error detection,” 2022, arXiv:2207.13128. [Online]. Available: https://doi.org/10.48550/arXiv.2207.13128
S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y
D. Bluvstein, “A quantum processor based on coherent transport of entangled atom arrays,” Nature, vol. 604, pp. 451–456, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04592-6
T. M. Graham, “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer,” Nature, vol. 604, pp. 457–462, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04603-6
P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5
S. Krinner, “Realizing repeated quantum error correction in a distance-three surface code,” Nature, vol. 605, no. 7911, pp. 669–674, 2022. [Online]. Available: http://doi.org/10.1038/s41586-022-04566-8
L. Zhai, “Quantum interference of identical photons from remote GaAs quantum dots,” Nature Nanotechnol., vol. 17, pp. 829–833, 2022. [Online]. Available: https://doi.org/10.1038/s41565-022-01131-2
C. Babin, “Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence,” Nature Mater., vol. 21, no. 1, pp. 67–73, 2022. [Online]. Available: https://doi.org/10.1038/s41563-021-01148-3
D. M. Lukin, “Optical superradiance of a pair of color centers in an integrated silicon-carbide-on-insulator microresonator,” 2022, arXiv:2202.04845. [Online]. Available: https://doi.org/10.48550/arXiv.2202.04845
H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999
E. N. Knall, “Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System,” Phys. Rev. Lett., vol. 129, no. 5, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.129.053603
Z.-H. Zhang, “Neutral silicon vacancy centers in undoped diamond via surface control,” 2022, arXiv:2206.13698. [Online]. Available: http://arxiv.org/abs/2206.13698
P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548
A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819
D. Chen, “Quantum interference of resonance fluorescence from Germanium-vacancy color centers in diamond,” Nano Lett., vol. 22, no. 15, pp. 6306–6312, 2022. [Online]. Available: https://doi.org/10.1021/acs.nanolett.2c01959
J. Arjona Martínez, “Photonic indistinguishability of the tin-vacancy center in nanostructured diamond,” 2022, arXiv:2206.15239. [Online]. Available: https://doi.org/10.48550/arXiv.2206.15239
S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577
K. C. Wong, “Microscopic study of optically stable coherent color centers in diamond generated by high-temperature annealing,” Phys. Rev. Appl., vol. 18, no. 2, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.18.024044
B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362
K. Arai, “Millimetre-scale magnetocardiography of living rats with thoracotomy,” Commun. Phys., vol. 5, no. 1, pp. 1–10, 2022. [Online]. Available: https://doi.org/10.1038/s42005-022-00978-0
Z. Zhao, “Sub-nanotesla sensitivity at the nanoscale with a single spin,” 2022, arXiv:2205.04415. [Online]. Available: https://doi.org/10.48550/arXiv.2205.04415
H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002
L. Orphal-Kobin, “Optically coherent nitrogen-vacancy defect centers in diamond nanostructures,” 2022, arXiv:2203.05605. [Online]. Available: https://doi.org/10.48550/arXiv.2203.05605
S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0
A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066
C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826
Y. Narita, “Identical photons from multiple tin-vacancy centers in diamond,” 2022, arXiv:2208.06275. [Online]. Available: https://doi.org/10.48550/arXiv.2208.06275
E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H
Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8
J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354
A. Stolk, “Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers,” PRX Quantum, vol. 3, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.3.020359
O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214
B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234
D. Levonian, “Optical entanglement of distinguishable quantum emitters,” Phys. Rev. Lett., vol. 128, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.128.213602
H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888
2021 (40)
D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081
R. Debroux, “Quantum control of the tin-vacancy spin qubit in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.11.041041
P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840
V. Yurgens, “Low-charge-noise nitrogen-vacancy centers in diamond created using laser writing with a solid-immersion lens,” ACS Photon., vol. 8, pp. 1726–1734, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00274
S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7
M. J. Degen, “Entanglement of dark electron-nuclear spin defects in diamond,” Nature Commun., vol. 12, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-021-23454-9
T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4
A. Das, “Demonstration of hybrid high-Q hexagonal boron nitride microresonators,” ACS Photon., vol. 8, no. 10, pp. 3027–3033, 2021.
X. Yan, “Silicon photonic quantum computing with spin qubits,” APL Photon., vol. 6, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0049372
A. Pscherer, “Single-molecule vacuum Rabi splitting: Four-wave mixing and optical switching at the single-photon level,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.133603
M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314
E. R. Eisenach, “Cavity-enhanced microwave readout of a solid-state spin sensor,” Nature Commun., vol. 12, no. 1, pp. 1–7, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-21256-7
A. M. Edmonds, “Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications,” Mater. Quantum Technol., vol. 1, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/0.1088/2633-4356/abd88a
B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535
M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed
N. Tomm, “A bright and fast source of coherent single photons,” Nature Nanotechnol., vol. 16, pp. 399–403, 2021. [Online]. Available: http://doi.org/10.1038/s41565-020-00831-x
K. O. Ho, “Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy ($\text {NV})$ center in diamond,” J. Appl. Phys., vol. 129, no. 24, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0052233
V. V. Soshenko, “Nuclear spin gyroscope based on the nitrogen vacancy center in diamond,” Phys. Rev. Lett., vol. 126, no. 19, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.197702
M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049
K. G. Fehler, “Hybrid quantum photonics based on artificial atoms placed inside one hole of a photonic crystal cavity,” ACS Photon., vol. 8, pp. 2635–2641, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00530
A. E. Rugar, “Quantum photonic interface for tin-vacancy centers in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevX.11.031021
K. Kuruma, “Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond,” Appl. Phys. Lett., vol. 118, no. 23, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0051675
L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601
M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534
B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A
D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w
N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511
N. Hedrich, “Nanoscale mechanics of antiferromagnetic domain walls,” Nature Phys., vol. 17, pp. 574–577, 2021. [Online]. Available: http://doi.org/10.1038/s41567-020-01157-0
A. G. Primo, “Accurate modeling and characterization of photothermal forces in optomechanics,” APL Photon., vol. 6, no. 8, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0055201
S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010
L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402
S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425
P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3
S. Daiss, “A quantum-logic gate between distant quantum-network modules,” Science, vol. 371, no. 6529, pp. 614–617, 2021. [Online]. Available: https://doi.org/10.1126/science.abe3150
M. Pompili, “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, 2021. [Online]. Available: http://doi.org/10.1126/science.abg1919
L. Egan, “Fault-tolerant control of an error-corrected qubit,” Nature, vol. 598, pp. 281–286, 2021. [Online]. Available: https://doi.org/10.1038/s41586-021-03928-y
S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506
S. Langenfeld, “Quantum teleportation between remote qubit memories with only a single photon as a resource,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.130502
G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863
Y. Wu, “Strong quantum computational advantage using a superconducting quantum processor,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.180501
2020 (48)
J. Yin, “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2401-y
H.-S. Zhong, “Quantum computational advantage using photons,” Science, vol. 370, pp. 1460–1463, 2020. [Online]. Available: https://doi.org/10.1126/science.abe8770
L. Stephenson, “High-rate, high-fidelity entanglement of qubits across an elementary quantum network,” Phys. Rev. Lett., vol. 124, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.110501
M. K. Bhaskar, “Experimental demonstration of memory-enhanced quantum communication,” Nature, vol. 580, pp. 60–64, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2103-5
A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z
J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9
D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102
N. T. Son, “Developing silicon carbide for quantum spintronics,” Appl. Phys. Lett., vol. 116, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0004454
A. Bourassa, “Entanglement and control of single nuclear spins in isotopically engineered silicon carbide,” Nature Mater., vol. 19, no. 12, pp. 1319–1325, 2020. [Online]. Available: https://doi.org/10.1038/s41563-020-00802-6
G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192
N. Lauk, “Perspectives on quantum transduction,” Quantum Sci. Technol., vol. 5, no. 2, 2020, Art. no. . [Online]. Available: http://doi.org/10.1088/2058-9565/ab788a
Y. Chu and S. Gröblacher, “A perspective on hybrid quantum opto- and electromechanical systems,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0021088
M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6
Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb
U. Wahl, “Direct structural identification and quantification of the split-vacancy configuration for implanted Sn in diamond,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.045301
J. N. Becker and E. Neu, “The silicon vacancy center in diamond,” vol. 103, pp. 201–235, 2020. [Online]. Available: https://doi.org/10.1016/bs.semsem.2020.04.001
G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075
A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601
A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z
H. Wang and I. Lekavicius, “Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0024001
N. H. Wan, “Large-scale integration of artificial atoms in hybrid photonic circuits,” Nature, vol. 583, pp. 226–231, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2441-3
M. Forsch, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nature Phys., vol. 16, no. 1, pp. 69–74, 2020. [Online]. Available: https://doi.org/10.1038/s41567-019-0673-7
D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x
D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036
N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007
A. E. Rugar, “Narrow-linewidth tin-vacancy centers in a diamond waveguide,” ACS Photon., vol. 7, pp. 2356–2361, 2020. [Online]. Available: https://doi.org/10.1021/acsphotonics.0c00833
M. Kasperczyk, “Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures,” Phys. Rev. B, vol. 102, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.102.075312
R. Høy Jensen, “Cavity-enhanced photon emission from a single germanium-vacancy center in a diamond membrane,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.064016
J. F. Barry, “Sensitivity optimization for NV-diamond magnetometry,” Rev. Mod. Phys., vol. 92, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.92.015004
D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036
J. L. Webb, “Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals,” Front. Phys., vol. 8, 2020, Art. no. . [Online]. Available: https://doi.org/10.3389/fphy.2020.522536
I. Bertelli, “Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator,” Sci. Adv., vol. 6, 2020, Art. no. . [Online]. Available: https://www.science.org/doi/10.1126/sciadv.abd3556
G. S. MacCabe, “Nano-acoustic resonator with ultralong phonon lifetime,” Science, vol. 370, no. 6518, pp. 840–843, 2020. [Online]. Available: https://doi.org/10.1126/science.abc7312
P. Magnard, “Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.260502
Y. Yu, “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, no. 7794, pp. 240–245, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-1976-7
S. Maity, “Coherent acoustic control of a single silicon vacancy spin in diamond,” Nature Commun., vol. 11, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-019-13822-x
S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications,” J. Physics: Photon., vol. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/2515-7647/ab77a2
S. A. Meynell, “Engineering quantum-coherent defects: The role of substrate miscut in chemical vapor deposition diamond growth,” Appl. Phys. Lett., vol. 117, no. 19, 2020, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0029715
S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187
Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263
J. Lang, “Long optical coherence times of shallow-implanted, negatively charged silicon vacancy centers in diamond,” Appl. Phys. Lett., vol. 116, no. 6, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/1.5143014
J. Görlitz, “Spectroscopic investigations of negatively charged tin-vacancy centres in diamond,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab6631
A. E. Rugar, “Generation of tin-vacancy centers in diamond via shallow ion implantation and subsequent diamond overgrowth,” Nano Lett., vol. 20, pp. 1614–1619, 2020. [Online]. Available: https://doi.org/10.1021/acs.nanolett.9b04495
M. E. Trusheim, “Transform-limited photons from a coherent tin-vacancy spin in diamond,” Phys. Rev. Lett., vol. 124, no. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.023602
J. E. Fröch, “Versatile direct-writing of dopants in a solid state host through recoil implantation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-020-18749-2
Z. H. Zhang, “Optically detected magnetic resonance in neutral silicon vacancy centers in diamond via bound exciton states,” Phys. Rev. Lett., vol. 125, pp. 1–6, 2020. [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.237402
M. Kianinia and I. Aharonovich, “Diamond photonics is scaling up,” Nature Photon., vol. 14, pp. 599–600, 2020. [Online]. Available: https://doi.org/10.1038/s41566-020-0695-9
2019 (46)
R. Nelz, “Toward wafer-scale diamond nano- and quantum technologies,” APL Mater., vol. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5067267
M. Nguyen, “Photodynamics and quantum efficiency of germanium vacancy color centers in diamond,” Adv. Photon., vol. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1117/1.AP.1.6.066002
M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010
R. Tsukahara, “Removing non-size-dependent electron spin decoherence of nanodiamond quantum sensors by aerobic oxidation,” ACS Appl. Nano Mater., vol. 2, no. 6, pp. 3701–3710, 2019. [Online]. Available: http://doi.org/10.1021/acsanm.9b00614
S. M. Eaton, “Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation,” Adv. Quantum Technol., vol. 2, no. 5/6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900006
M. E. Trusheim, “Lead-related quantum emitters in diamond,” Phys. Rev. B, vol. 99, no. 7, 2019, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.99.075430
D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101
S. Sangtawesin, “Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031052
Y. Rong, “Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation,” Opt. Lett., vol. 44, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.44.003793
Y.-C. Chen, “Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield,” Optica, vol. 6, May 2019, Art. no. . [Online]. Available: http://doi.org/10.1364/OPTICA.6.000662
C. J. Stephen, “Deep three-dimensional solid-state qubit arrays with long-lived spin coherence,” Phys. Rev. Appl., vol. 12, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.12.064005
J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196
P. K. Shandilya, “Hexagonal boron nitride cavity optomechanics,” Nano Lett., vol. 19, no. 2, pp. 1343–1350, 2019. [Online]. Available: https://doi.org/10.1021/acs.nanolett.8b04956
S. J. Whiteley, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nature Phys., vol. 15, no. 5, pp. 490–495, 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0420-0
R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825
A. Bienfait, “Phonon-mediated quantum state transfer and remote qubit entanglement,” Science, vol. 364, no. 6438, pp. 368–371, 2019. [Online]. Available: https://doi.org/10.1126/science.aaw8415
D. Najer, “A gated quantum dot strongly coupled to an optical microcavity,” Nature, vol. 575, no. 7784, pp. 622–627, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1709-y
B. Machielse, “Quantum interference of electromechanically stabilized emitters in nanophotonic devices,” Phys. Rev. X, vol. 9, no. 3, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031022
D. Wang, “Turning a molecule into a coherent two-level quantum system,” Nature Phys., vol. 15, pp. 483–489, May 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0436-5
A. Tchebotareva, “Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength,” Phys. Rev. Lett., vol. 123, no. 6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.063601
V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3
C. T. Nguyen, “Quantum network nodes based on diamond qubits with an efficient nanophotonic interface,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.183602
L. Thiel, “Probing magnetism in 2D materials at the nanoscale with single-spin microscopy,” Science, vol. 364, pp. 973–976, 2019. [Online]. Available: https://www.science.org/doi/10.1126/science.aav6926
G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386
M. H. Abobeih, “Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor,” Nature, vol. 576, no. 7787, pp. 411–415, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1834-7
S. Häußler, “Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.165310
M. Ruf, “Optically coherent nitrogen-vacancy centers in micrometer-thin etched diamond membranes,” Nano Lett., vol. 19, pp. 3987–3992, 2019. [Online]. Available: http://doi.org/10.1021/acs.nanolett.9b01316
C. T. Nguyen, “An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond,” Phys. Rev. B, vol. 100, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.100.165428
T. Jung, “Spin measurements of NV centers coupled to a photonic crystal cavity,” APL Photon., vol. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5120120
P. Kharel, “High-frequency cavity optomechanics using bulk acoustic phonons,” Sci. Adv., vol. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aav0582
C. Dory, “Inverse-designed diamond photonics,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-11343-1
D. Chen, “Optical gating of resonance fluorescence from a single germanium vacancy color center in diamond,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org10.1103/PhysRevLett.123.033602
S. B. van Dam, “Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.161203
M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832
M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122
A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102
J. V. Cady, “Diamond optomechanical crystals with embedded nitrogen-vacancy centers,” Quantum Sci. Technol., vol. 4, no. 2, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/ab043e
A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213
Á. Gali, “Ab initio theory of the nitrogen-vacancy center in diamond,” Nanophotonics, vol. 8, pp. 1907–1943, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0154
J. Kölbl, “Initialization of single spin dressed states using shortcuts to adiabaticity,” Phys. Rev. Lett., vol. 122, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.090502
M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217
J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091
C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w
C. E. Bradley, “A ten-qubit solid-state spin register with quantum memory up to one minute,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031045
C. P. Anderson, “Electrical and optical control of single spins integrated in scalable semiconductor devices,” Science, vol. 366, pp. 1225–1230, 2019. [Online]. Available: https://doi.org/doi/10.1126/science.aax9406
F. Arute, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, 2019. [Online]. Available: http://doi.org/10.1038/s41586-019-1666-5
2018 (40)
S.-K. Liao, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.120.030501
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288
D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2
A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601
R. E. Evans, “Photon-mediated interactions between quantum emitters in a diamond nanocavity,” Science, vol. 362, pp. 662–665, 2018. [Online]. Available: https://doi.org/10.1126/science.aau4691
P. C. Humphreys, “Deterministic delivery of remote entanglement on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273, 2018. [Online]. Available: http://doi.org/10.1038/s41586-018-0200-5
L. Fan, “Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv., vol. 4, 2018, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aar4994
A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031
P. R. Dolan, “Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity,” Opt. Exp., vol. 26, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.26.007056
M. H. Abobeih, “One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment,” Nature Commun., vol. 9, 2018, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-018-04916-z
B. C. Rose, “Observation of an environmentally insensitive solid-state spin defect in diamond,” Science, vol. 361, pp. 60–63, 2018. [Online]. Available: https://www.doi.org/10.1126/science.aao0290
S. Meesala, “Strain engineering of the silicon-vacancy center in diamond,” Phys. Rev. B, vol. 97, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.97.205444
J. N. Becker, “All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.053603
P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318
D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516
C. Huang, “Anisotropy effects in diamond under nanoindentation,” Carbon, vol. 132, pp. 606–615, 2018. [Online]. Available: https://doi.org/10.1016/j.carbon.2018.02.066
N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349
T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316
L. Marseglia, “Bright nanowire single photon source based on SiV centers in diamond,” Opt. Exp., vol. 26, no. 1, pp. 80–89, 2018. [Online]. Available: https://doi.org/10.1364/OE.26.000080
S. Sun, “Cavity-enhanced Raman emission from a single color center in a solid,” Phys. Rev. Lett., vol. 121, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.121.083601
J. P. Hadden, “Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.43.003586
F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88
H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216
J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044
E. Boto, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, vol. 555, no. 7698, pp. 657–661, 2018. [Online]. Available: https://doi.org/10.1038/nature26147
P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640
B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303
J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb
D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781
J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0
E. R. Schmidgall, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett., vol. 18, pp. 1175–1179, 2018. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b04717
L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501
M.-A. Lemonde, “Phonon networks with silicon-vacancy centers in diamond waveguides,” Phys. Rev. Lett., vol. 120, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.213603
V. Sedov, “Growth of polycrystalline and single-crystal $\text {CVD}$ diamonds with bright photoluminescence of $\text {Ge-V}$ color centers using germane $\text {GeH}_{4}$ as the dopant source,” Diamond Related Mater., vol. 90, pp. 47–53, 2018. [Online]. Available: https://doi.org/10.1016/j.diamond.2018.10.001
S. D. Tchernij, “Single-photon emitters in lead-implanted single-crystal diamond,” ACS Photon., vol. 5, pp. 4864–4871, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.8b01013
Y.-I. Sohn, “Controlling the coherence of a diamond spin qubit through its strain environment,” Nature Commun., vol. 9, no. 1, 2018, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-018-04340-3
G. Thiering and A. Gali, “Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond,” Phys. Rev. X, vol. 8, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.8.021063
M. Challier, “Advanced fabrication of single-crystal diamond membranes for quantum technologies,” Micromachines, vol. 9, 2018, Art. no. . [Online]. Available: https://doi.org/10.3390/mi9040148
N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330
2017 (42)
M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462
M. Pfender, “Protecting a diamond quantum memory by charge state control,” Nano Lett., vol. 17, no. 10, pp. 5931–5937, 2017. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b01796
T. Iwasaki, “Tin-vacancy quantum emitters in diamond,” Phys. Rev. Lett., vol. 119, no. 25, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.253601
S. D. Tchernij, “Single-photon-emitting optical centers in diamond fabricated upon sn implantation,” ACS Photon., vol. 4, no. 10, pp. 2580–2586, 2017. [Online]. Available: http://doi.org/10.1021/acsphotonics.7b00904
T. Schröder, “Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15376
T. Schröder, “Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation,” Opt. Mater. Exp., vol. 7, May 2017, Art. no. . [Online]. Available: https://doi.org/10.1364/OME.7.001514
Y.-C. Chen, “Laser writing of coherent colour centres in diamond,” Nature Photon., vol. 11, pp. 77–80, 2017. [Online]. Available: http://doi.org/10.1038/nphoton.2016.234
F. Fávaro de Oliveira, “Tailoring spin defects in diamond by lattice charging,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15409
A. Haque and S. Sumaiya, “An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation,” J. Manuf. Mater. Process., vol. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.3390/jmmp1010006
V. Sedov, “SiV color centers in Si-doped isotopically enriched $^{12}\text {C}$ and $^{13}\text {C}$ CVD diamonds,” Physica Status Solidi (a), vol. 214, 2017, Art. no. . [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/pssa.201700198
H. A. Atikian, “Freestanding nanostructures via reactive ion beam angled etching,” APL Photon., vol. 2, no. 5, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4982603
D. Kikuchi, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Exp., vol. 10, 2017, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.7567/APEX.10.103004
P. Andrich, “Long-range spin wave mediated control of defect qubits in nanodiamonds,” NPJ Quantum Inf., vol. 3, 2017, Art. no. . [Online]. Available: https://www.nature.com/articles/s41534-017-0029-z
S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photon., vol. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4978204
M. Munsch, “Resonant driving of a single photon emitter embedded in a mechanical oscillator,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-017-00097-3
D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458
N. Aslam, “Nanoscale nuclear magnetic resonance with chemical resolution,” Science, vol. 357, no. 6346, pp. 67–71, 2017. [Online]. Available: https://doi.org/10.1126/science.aam8697
S. Schmitt, “Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor,” Science, vol. 356, no. 6340, pp. 832–837, 2017. [Online]. Available: https://doi.org/10.1126/science.aam5532
J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009
M. Wu, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nature Nanotechnol., vol. 12, no. 2, pp. 127–131, 2017. [Online]. Available: https://doi.org/10.1038/nnano.2016.226
G. Chatzidrosos, “Miniature cavity-enhanced diamond magnetometer,” Phys. Rev. Appl., vol. 8, no. 4, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.044019
M. Bhaskar, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett., vol. 118, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.118.223603
J. Benedikter, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl., vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.7.024031
P. Siyushev, “Optical and microwave control of germanium-vacancy center spins in diamond,” Phys. Rev. B, vol. 96, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.96.081201
M. J. Weaver, “Coherent optomechanical state transfer between disparate mechanical resonators,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-017-00968-9
M. C. Kuzyk and H. Wang, “Controlling multimode optomechanical interactions via interference,” Phys. Rev. A, vol. 96, no. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.96.023860
W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114
F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508
M. J. Burek, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl., vol. 8, pp. 1–10, 2017. [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.024026
S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118
J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4
B. Pingault, “Coherent control of the silicon-vacancy spin in diamond,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15579
D. Sukachev, “Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett., vol. 119, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.223602
D. Riedel, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X, vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.7.031040
E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358
S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003
D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd
N. Kalb, “Entanglement distillation between solid-state quantum network nodes,” Science, vol. 356, no. 6341, pp. 928–932, 2017. [Online]. Available: http://doi.org/10.1126/science.aan0070
R. Stockill, “Phase-tuned entangled state generation between distant spin qubits,” Phys. Rev. Lett., vol. 119, 2017, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.119.010503
T. Zhong, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science, vol. 357, no. 6358, pp. 1392–1395, 2017. [Online]. Available: https://doi.org/10.1126/science.aan5959
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002
2016 (28)
P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165
O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176
R. Valivarthi, “Quantum teleportation across a metropolitan fibre network,” Nature Photon., vol. 10, pp. 676–680, 2016. [Online]. Available: http://doi.org/10.1038/nphoton.2016.180
J. Cramer, “Repeated quantum error correction on a continuously encoded qubit by real-time feedback,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms11526
A. Sipahigil, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science, vol. 354, pp. 847–850, 2016. [Online]. Available: https://doi.org/10.1126/science.aah6875
I. P. Radko, “Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond,” Opt. Exp., vol. 24, 2016, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.24.027715
J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512
T. Schröder, “Quantum nanophotonics in diamond [Invited],” J. Opt. Soc. Amer. B, vol. 33, no. 4, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B65
C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401
A. Pontin, “Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system,” Phys. Rev. Lett., vol. 116, no. 10, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.103601
H. Kaupp, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.054010
M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001
M. Gould, “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. America B, vol. 33, no. 3, pp. B35–B42, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B35
J. L. Zhang, “Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers,” Nano Lett., vol. 16, no. 1, pp. 212–217, 2016. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b03515
P. Appel, “Fabrication of all diamond scanning probes for nanoscale magnetometry,” Rev. Sci. Instrum., vol. 87, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4952953
R. Körber, “SQUIDS in biomagnetism: A roadmap towards improved healthcare,” Supercond. Sci. Technol., vol. 29, no. 11, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/0953-2048/29/11/113001
J. F. Barry, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Nat. Acad. Sci., vol. 113, no. 49, pp. 14133–14138, 2016. [Online]. Available: https://doi.org/10.1073/pnas.1601513113
M. E. Trusheim and D. Englund, “Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond,” New J. Phys., vol. 18, no. 12, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/aa5040
S. Meesala, “Enhanced strain coupling of nitrogen-vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl., vol. 5, no. 3, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.034010
D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060
I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186
R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010
A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735
D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242
A. Reiserer, “Robust quantum-network memory using decoherence-protected subspaces of nuclear spins,” Phys. Rev. X, vol. 6, no. 2, 2016, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.6.021040
T. Unden, “Quantum metrology enhanced by repetitive quantum error correction,” Phys. Rev. Lett., vol. 116, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.230502
2015 (33)
C. Osterkamp, “Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF$_{6}$ plasma treatment,” Appl. Phys. Lett., vol. 106, no. 11, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4915305
T. Iwasaki, “Germanium-vacancy single color centers in diamond,” Sci. Rep., vol. 5, no. 1, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/srep12882
F. Fávaro de Oliveira, “Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 107, no. 7, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4929356
B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603
P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494
A. Bolshakov, “Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane,” Physica Status Solidi (a), vol. 212, pp. 2525–2532, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532174
D. Rugar, “Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor,” Nature Nanotechnol., vol. 10, pp. 120–124, 2015. [Online]. Available: http://doi.org/10.1038/nnano.2014.288
T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299
S. L. Mouradian, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.031009
E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844
T. Wolf, “Subpicotesla diamond magnetometry,” Phys. Rev. X, vol. 5, no. 4, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041001
W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58
L. Li, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms7173
S. Johnson, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys., vol. 17, 2015, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/17/12/122003
L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850
M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902
S. A. Momenzadeh, “Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers,” Nano Lett., vol. 15, pp. 165–169, 2015. [Online]. Available: https://doi.org/10.1021/nl503326t
A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411
Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801
J. D. Cohen, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature, vol. 520, no. 7548, pp. 522–525, 2015. [Online]. Available: https://doi.org/10.1038/nature14349
L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002
B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051
B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346
J. Riedrich-Möller, “Nanoimplantation and purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett., vol. 106, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4922117
K. D. Jahnke, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys., vol. 17, no. 4, 2015, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/17/4/043011
I. Bayn, “Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks,” Nano Lett., vol. 15, pp. 1751–1758, 2015. [Online]. Available: https://doi.org/10.1021/nl504441m
X. Rong, “Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions,” Nature Commun., vol. 6, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms9748
B. Hensen, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–686, 2015. [Online]. Available: http://doi.org/10.1038/nature15759
M. Zhong, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature, vol. 517, no. 7533, pp. 177–180, 2015. [Online]. Available: http://doi.org/10.1038/nature14025
A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Modern Phys., vol. 87, pp. 1379–1418, 2015. [Online]. Available: https://doi.org/10.1103/RevModPhys.87.1379
W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266
2014 (49)
P. Kómár, “A quantum network of clocks,” Nature Phys., vol. 10, no. 8, pp. 582–587, 2014. [Online]. Available: http://doi.org/10.1038/nphys3000
T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nature Photon., vol. 8, pp. 356–363, May 2014. [Online]. Available: http://doi.org/10.1038/nphoton.2014.53
W. Pfaff, “Unconditional quantum teleportation between distant solid-state quantum bits,” Science, vol. 345, no. 6196, pp. 532–535, 2014. [Online]. Available: https://doi.org/10.1126/science.1253512
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2
L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549
A. Dietrich, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys., vol. 16, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/16/11/113019
L. Rogers, “Multiple intrinsically identical single-photon emitters in the solid state,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms5739
L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503
G. Waldherr, “Quantum error correction in a solid-state hybrid spin register,” Nature, vol. 506, pp. 204–207, 2014. [Online]. Available: http://doi.org/10.1038/nature12919
C. Hepp, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett., vol. 112, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.036405
I. Bayn, “Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks,” Appl. Phys. Lett., vol. 105, no. 21, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4902562
M. J. Burek, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6718
Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638
P. Rath, “Diamond electro-optomechanical resonators integrated in nanophotonic circuits,” Appl. Phys. Lett., vol. 105, no. 25, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4901105
B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72
C.-H. Lu, “Generation of octave-spanning supercontinuum by Raman-assisted four-wave mixing in single-crystal diamond,” Opt. Exp., vol. 22, no. 4, pp. 4075–4082, 2014. [Online]. Available: https://doi.org/10.1364/OE.22.004075
O. Lux, “Multi-octave frequency comb generation by $\chi$ (3)-nonlinear optical processes in CVD diamond at low temperatures,” Laser Phys. Lett., vol. 11, no. 8, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1612-2011/11/8/086101
L. J. Rogers, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.263602
A. Sipahigil, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.113602
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391
E. Neu, “Photonic nano-structures on (111)-oriented diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4871580
D. Riedel, “Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond,” Phys. Rev. Appl., vol. 2, 2014, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.2.064011
M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818
J. Riedrich-Möller, “Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond,” Nano Lett., vol. 14, no. 9, pp. 5281–5287, 2014. [Online]. Available: http://doi.org/10.1021/nl502327b
M. Wu, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.4.021052
R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659
L. Greuter, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4896415
Y. Chu, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett., vol. 14, pp. 1982–1986, 2014. [Online]. Available:https://doi.org/10.1021/nl404836p
N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.
F. Dolde, “Nanoscale detection of a single fundamental charge in ambient conditions using the $\text{NV}^-$ center in diamond,” Phys. Rev. Lett., vol. 112, no. 9, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.097603
M. S. Grinolds, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nature Nanotechnol., vol. 9, pp. 279–284, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.30
I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater., vol. 2, pp. 911–928, 2014. [Online]. Available: http://doi.org/10.1002/adom.201400189
H. A. Atikian, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4869574
J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503
M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999
P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429
I. Yeo, “Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system,” Nature Nanotechnol., vol. 9, no. 2, pp. 106–110, 2014. [Online]. Available: https://doi.org/10.1038/nnano.2013.274
P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14
B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602
S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971
S. Tamura, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Exp., vol. 7, no. 11, 2014, Art. no. . [Online]. Available: http://doi.org/10.7567/APEX.7.115201
M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y
T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229
M. V. Hauf, “Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures,” Nano Lett., vol. 14, no. 5, pp. 2359–2364, 2014. [Online]. Available: https://doi.org/10.1021/nl4047619
M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839
H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720
2013 (17)
S. Cui and E. L. Hu, “Increased negatively charged nitrogen-vacancy centers in fluorinated diamond,” Appl. Phys. Lett., vol. 103, no. 5, 2013, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4817651
E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602
P. Neumann, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett., vol. 13, no. 6, pp. 2738–2742, 2013. [Online]. Available: https://doi.org/10.1021/nl401216y
H. J. Mamin, “Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor,” Science, vol. 339, no. 6119, pp. 557–560, 2013. [Online]. Available: https://doi.org/10.1126/science.1231540
T. Staudacher, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)$^{3}$ sample volume,” Science, vol. 339, no. 6119, pp. 561–563, 2013. [Online]. Available: https://doi.org/10.1126/science.1231675
B. J. Hausmann, “Coupling of $\text {NV}$ centers to photonic crystal nanobeams in diamond,” Nano Lett., vol. 13, pp. 5791–5796, 2013. [Online]. Available: https://doi.org/10.1021/nl402174g
A. Faraon, “Quantum photonic devices in single-crystal diamond,” New J. Phys., vol. 15, no. 2, 2013, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/15/2/025010
M. Woolley and A. Clerk, “Two-mode back-action-evading measurements in cavity optomechanics,” Phys. Rev. A, vol. 87, no. 6, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.87.063846
Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603
M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917
P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710
A. Gali and J. R. Maze, “Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties,” Phys. Rev. B, vol. 88, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.88.235205
F. Dolde, “Room-temperature entanglement between single defect spins in diamond,” Nature Phys., vol. 9, no. 3, pp. 139–143, 2013. [Online]. Available: http://doi.org/10.1038/nphys2545
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001
H. Bernien, “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, pp. 86–90, May 2013. [Online]. Available: http://doi.org/10.1038/nature12016
R. J. Warburton, “Single spins in self-assembled quantum dots,” Nature Mater., vol. 12, no. 6, pp. 483–493, 2013. [Online]. Available: https://doi.org/10.1038/nmat3585
M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, pp. 1169–1174, 2013. [Online]. Available: https://doi.org/10.1126/science.1231930
2012 (24)
S. Ritter, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012. [Online]. Available: http://doi.org/10.1038/nature11023
J. Hofmann, “Heralded entanglement between widely separated atoms,” Science, vol. 336, no. 6090, pp. 72–75, 2012. [Online]. Available: https://doi.org/10.1126/science.1221856
P. C. Maurer, “Room-temperature quantum bit memory exceeding one second,” Science, vol. 336, no. 6086, pp. 1283–1286, 2012. [Online]. Available: http://doi.org/10.1126/science.1220513
M. Fuechsle, “A single-atom transistor,” Nature Nanotechnol., vol. 7, pp. 242–246, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.21
T. Ishikawa, “Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer,” Nano Lett., vol. 12, pp. 2083–2087, 2012. [Online]. Available: https://doi.org/10.1021/nl300350r
E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956
H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604
A. Sipahigil, “Quantum interference of single photons from remote nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.143601
P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274
A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604
J. Riedrich-Möller, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nature Nanotechnol., vol. 7, pp. 69–74, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2011.190
P. Maletinsky, “A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres,” Nature Nanotechnol., vol. 7, pp. 320–324, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.50
F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993
J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201
T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602
D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721
K. Ohno, “Engineering shallow spins in diamond with nitrogen delta-doping,” Appl. Phys. Lett., vol. 101, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4748280
M. J. Burek, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett., vol. 12, no. 12, pp. 6084–6089, 2012. [Online]. Available: https://doi.org/10.1021/nl302541e
V. Petráková, “Luminescence of nanodiamond driven by atomic functionalization: Towards novel detection principles,” Adv. Funct. Mater., vol. 22, no. 4, pp. 812–819, 2012. [Online]. Available: https://doi.org/10.1002/adfm.201101936
B. Grotz, “Charge state manipulation of qubits in diamond,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1729
V. M. Acosta, “Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, May 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.206401
J. O. Orwa, “An upper limit on the lateral vacancy diffusion length in diamond,” Diam. Relat. Mater., vol. 24, 2012, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2012.02.009
B. Ofori-Okai, “Spin properties of very shallow nitrogen vacancy defects in diamond,” Phys. Rev. B, vol. 86, no. 8, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.86.081406
T. Staudacher, “Enhancing the spin properties of shallow implanted nitrogen vacancy centers in diamond by epitaxial overgrowth,” Appl. Phys. Lett., vol. 101, no. 21, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4767144
2011 (22)
M. V. Hauf, “Chemical control of the charge state of nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 83, no. 8, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.83.081304
A. K. Tiwari, “Calculated electron affinity and stability of halogen-terminated diamond,” Phys. Rev. B, vol. 84, no. 24, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.84.245305
Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502
S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024
J. O. Orwa, “Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing,” J. Appl. Phys., vol. 109, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573768
J. Chan, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011. [Online]. Available: http://www.nature.com/doifinder/10.1038/nature10461
O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070
K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023
A. Dréau, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B, vol. 84, no. 19, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.84.195204
L. Marseglia, “Nanofabricated solid immersion lenses registered to single emitters in diamond,” Appl. Phys. Lett., vol. 98, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573870
X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545
K. G. Lee, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photon., vol. 5, pp. 166–169, 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2010.312
P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007
A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52
I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018
J. Teufel, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature, vol. 475, no. 7356, pp. 359–363, 2011. [Online]. Available: https://doi.org/10.1038/nature10261
L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401
J. R. Maze, “Properties of nitrogen-vacancy centers in diamond: The group theoretic approach,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025025
L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013
C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys.: Conf. Ser., vol. 264, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1742-6596/264/1/012025
G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026
I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501
2010 (16)
D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q
K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501
E. Togan, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature, vol. 466, no. 7307, pp. 730–734, 2010. [Online]. Available: http://doi.org/10.1038/nature09256
L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Modern Phys., vol. 82, pp. 1209–1224, 2010. [Online]. Available: https://doi.org/10.1103/RevModPhys.82.1209
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812
M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236
D. Englund, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett., vol. 10, pp. 3922–3926, 2010. [Online]. Available: https://doi.org/10.1021/nl101662v
T. M. Babinec, “A diamond nanowire single-photon source,” Nature Nanotechnol., vol. 5, pp. 195–199, 2010. [Online]. Available: http://doi.org/10.1038/nnano.2010.6
B. J. Hausmann, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Related Mater., vol. 19, no. 5, pp. 621–629, 2010. [Online]. Available: https://doi.org/10.1016/j.diamond.2010.01.011
J. P. Hadden, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett., vol. 97, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3519847
P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556
V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801
B. Naydenov, “Increasing the coherence time of single electron spins in diamond by high temperature annealing,” Appl. Phys. Lett., vol. 97, no. 24, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3527975
L. Rondin, “Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds,” Phys. Rev. B, vol. 82, no. 11, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.82.115449
K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135
S. Pezzagna, “Nanoscale engineering and optical addressing of single spins in diamond,” Small, vol. 6, pp. 2117–2121, 2010. [Online]. Available: https://doi.org/10.1002/smll.201000902
2009 (11)
P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948
C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106
H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601
H. Pinto and R. Jones, “Theory of the birefringence due to dislocations in single crystal CVD diamond,” J. Physics: Condens. Matter, vol. 21, no. 36, 2009, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0953-8984/21/36/364220
A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524
A. Lang, “The strain-optical constants of diamond: A brief history of measurements,” Diamond Related Mater., vol. 18, no. 1, pp. 1–5, 2009. [Online]. Available: https://doi.org/10.1016/j.diamond.2008.07.020
V. P. Adiga, “Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators,” Phys. Rev. B, vol. 79, no. 24, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.79.245403
J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229
S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .
G. Balasubramanian, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mater., vol. 8, no. 5, pp. 383–387, 2009. [Online]. Available: http://doi.org/10.1038/nmat2420
2008 (8)
H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008. [Online]. Available: http://doi.org/10.1038/nature07127
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715
R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950
M. Pinard and A. Dantan, “Quantum limits of photothermal and radiation pressure cooling of a movable mirror,” New J. Phys., vol. 10, no. 9, 2008, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/10/9/095012
C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240
J. M. Taylor, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Phys., vol. 4, pp. 810–816, 2008. [Online]. Available: https://doi.org/10.1038/nphys1075
K.-M. C. Fu, “Coupling of nitrogen-vacancy centers in diamond to a gap waveguide,” Appl. Phys. Lett., vol. 93, no. 23, 2008, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3045950
J. M. Fink, “Climbing the jaynes-cummings ladder and observing its $\sqrt{n}$ nonlinearity in a cavity qed system,” Nature, vol. 454, pp. 315–318, 2008. [Online]. Available: https://doi.org/10.1038/nature07112
2007 (5)
F. C. Waldermann, “Creating diamond color centers for quantum optical applications,” Diamond Related Mater., vol. 16, pp. 1887–1895, 2007. [Online]. Available: https://doi.org/10.1016/j.diamond.2007.09.009
N. Gisin and R. Thew, “Quantum communication,” Nature Photon., vol. 1, pp. 165–171, 2007. [Online]. Available: http://doi.org/10.1038/nphoton.2007.22
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217
D. L. Moehring, “Entanglement of single-atom quantum bits at a distance,” Nature, vol. 449, no. 7158, pp. 68–71, 2007. [Online]. Available: http://doi.org/10.1038/nature06118
M. V. G. Dutt, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science, vol. 316, no. 5829, pp. 1312–1316, 2007. [Online]. Available: http://www.doi.org/10.1126/science.1139831
2006 (9)
L. Childress, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science, vol. 314, pp. 281–285, 2006. [Online]. Available: https://doi.org/10.1126/science.1131871
T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304
N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303
M. E. Wandel, “Attenuation in silica-based optical fibers,” Ph.D. dissertation, DTU, 2006. [Online]. Available: https://orbit.dtu.dk/en/publications/attenuation-in-silica-based-optical-fibers
S. L. Vittorio Giovannetti and L. Maccone, “Quantum metrology,” Phys. Rev. Lett., vol. 96, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.96.010401
P. Tamarat, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett., vol. 97, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.97.083002
L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299
L. E. Ocola and A. Stein, “Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness,” J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct., vol. 24, no. 6, pp. 3061–3065, 2006. [Online]. Available: https://doi.org/10.1116/1.2366698
C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005
2005 (8)
J. Meijer, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett., vol. 87, 2005, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2103389
M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515
S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A, vol. 71, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.71.060310
R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291
A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201
N. Manson and J. Harrison, “Photo-ionization of the nitrogen-vacancy center in diamond,” Diamond Related Mater., vol. 14, no. 10, pp. 1705–1710, 2005. [Online]. Available: https://doi.org/10.1016/j.diamond.2005.06.027
P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801
M. Povinelli, “Evanescent-wave bonding between optical waveguides,” Opt. Lett., vol. 30, no. 22, 2005, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.30.003042
2004 (5)
F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501
V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.
A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603
M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378
2003 (1)
D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281
2002 (2)
P. Glover and P. Mansfield, “Limits to magnetic resonance microscopy,” Rep. Prog. Phys., vol. 65, no. 10, 2002, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/65/10/203
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145
2001 (2)
F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411
C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305
1995 (1)
D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, pp. 255–261, 1995. [Online]. Available: https://doi.org/10.1126/science.270.5234.255
1994 (1)
K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.
1991 (1)
A. K. Ekert, “Quantum cryptography based on bell's theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, 1991. [Online]. Available: https://doi.org/10.1103/PhysRevLett.67.661
1978 (1)
1972 (1)
D. Cohen, “Magnetoencephalography: Detection of the brain's electrical activity with a superconducting magnetometer,” Science, vol. 175, no. 4022, pp. 664–666, 1972. [Online]. Available: https://doi.org/10.1126/science.175.4022.664
1946 (1)
E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, 1946, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRev.69.674.2
1922 (1)
W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik, vol. 9, pp. 349–352, 1922. [Online]. Available: http://doi.org/10.1007/BF01326983
Abe, E.
S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187
Abendroth, J. M.
E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H
Abobeih, M. H.
M. H. Abobeih, “Fault-tolerant operation of a logical qubit in a diamond quantum processor,” Nature, vol. 606, pp. 884–889, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04819-6
M. H. Abobeih, “One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment,” Nature Commun., vol. 9, 2018, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-018-04916-z
Abulnaga, A.
D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081
Acosta, V. M.
V. M. Acosta, “Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, May 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.206401
A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604
V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801
Adiga, V. P.
V. P. Adiga, “Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators,” Phys. Rev. B, vol. 79, no. 24, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.79.245403
Aghaeimeibodi, S.
S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010
Agio, M.
E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956
Aharonovich, I.
B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A
M. Kianinia and I. Aharonovich, “Diamond photonics is scaling up,” Nature Photon., vol. 14, pp. 599–600, 2020. [Online]. Available: https://doi.org/10.1038/s41566-020-0695-9
C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w
I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186
I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater., vol. 2, pp. 911–928, 2014. [Online]. Available: http://doi.org/10.1002/adom.201400189
T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229
I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501
Aksyuk, V.
Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603
Alegre, T. M.
N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511
Alegre, T. P. M.
A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601
F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508
Alkemade, P. F. A.
L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401
Almeida, J. M.
J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4
Amezcua, M.
D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060
An, T.
M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217
Anderson, C. P.
G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192
C. P. Anderson, “Electrical and optical control of single spins integrated in scalable semiconductor devices,” Science, vol. 366, pp. 1225–1230, 2019. [Online]. Available: https://doi.org/doi/10.1126/science.aax9406
Andrich, P.
P. Andrich, “Long-range spin wave mediated control of defect qubits in nanodiamonds,” NPJ Quantum Inf., vol. 3, 2017, Art. no. . [Online]. Available: https://www.nature.com/articles/s41534-017-0029-z
Anetsberger, G.
M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236
Appel, P.
P. Appel, “Fabrication of all diamond scanning probes for nanoscale magnetometry,” Rev. Sci. Instrum., vol. 87, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4952953
J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503
Aradi, B.
M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y
Arai, K.
K. Arai, “Millimetre-scale magnetocardiography of living rats with thoracotomy,” Commun. Phys., vol. 5, no. 1, pp. 1–10, 2022. [Online]. Available: https://doi.org/10.1038/s42005-022-00978-0
Arcizet, O.
B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603
O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070
Arend, C.
J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512
Arjona Martínez, J.
J. Arjona Martínez, “Photonic indistinguishability of the tin-vacancy center in nanostructured diamond,” 2022, arXiv:2206.15239. [Online]. Available: https://doi.org/10.48550/arXiv.2206.15239
Arnault, J.-C.
J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354
Arute, F.
F. Arute, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, 2019. [Online]. Available: http://doi.org/10.1038/s41586-019-1666-5
Aslam, N.
N. Aslam, “Nanoscale nuclear magnetic resonance with chemical resolution,” Science, vol. 357, no. 6346, pp. 67–71, 2017. [Online]. Available: https://doi.org/10.1126/science.aam8697
Aspelmeyer, M.
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391
Atikian, H. A.
H. A. Atikian, “Freestanding nanostructures via reactive ion beam angled etching,” APL Photon., vol. 2, no. 5, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4982603
H. A. Atikian, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4869574
Atkins, Z. J.
S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971
Awschalom, D. D.
M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314
G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192
D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2
W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266
B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602
G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026
D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q
Babin, C.
C. Babin, “Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence,” Nature Mater., vol. 21, no. 1, pp. 67–73, 2022. [Online]. Available: https://doi.org/10.1038/s41563-021-01148-3
Babinec, T. M.
T. M. Babinec, “A diamond nanowire single-photon source,” Nature Nanotechnol., vol. 5, pp. 195–199, 2010. [Online]. Available: http://doi.org/10.1038/nnano.2010.6
Bachtold, A.
A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819
Baets, R.
A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213
Baier, S.
S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y
Bakhru, H.
L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002
Balasubramanian, G.
G. Balasubramanian, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mater., vol. 8, no. 5, pp. 383–387, 2009. [Online]. Available: http://doi.org/10.1038/nmat2420
Balram, K. C.
Barbour, R. J.
N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.
D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721
Barclay, P.
R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825
K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135
Barclay, P. E.
B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234
D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w
P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3
D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x
G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386
M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122
M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832
D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516
D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242
B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346
B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051
M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999
A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52
P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007
K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023
P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948
P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801
M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378
P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1
Barfuss, A.
A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102
A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411
J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503
Barrett, S. D.
S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A, vol. 71, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.71.060310
Barry, J. F.
J. F. Barry, “Sensitivity optimization for NV-diamond magnetometry,” Rev. Mod. Phys., vol. 92, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.92.015004
J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044
J. F. Barry, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Nat. Acad. Sci., vol. 113, no. 49, pp. 14133–14138, 2016. [Online]. Available: https://doi.org/10.1073/pnas.1601513113
Bartholomew, J. G.
J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9
Barzanjeh, S.
S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0
Batzer, M.
N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007
Bauch, E.
V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801
Bayn, I.
I. Bayn, “Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks,” Nano Lett., vol. 15, pp. 1751–1758, 2015. [Online]. Available: https://doi.org/10.1021/nl504441m
I. Bayn, “Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks,” Appl. Phys. Lett., vol. 105, no. 21, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4902562
I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018
Beausoleil, R.
K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135
Beausoleil, R. G.
A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604
K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023
P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007
A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52
P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948
Becher, C.
J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512
E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956
Becker, J. N.
J. N. Becker and E. Neu, “The silicon vacancy center in diamond,” vol. 103, pp. 201–235, 2020. [Online]. Available: https://doi.org/10.1016/bs.semsem.2020.04.001
J. N. Becker, “All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.053603
J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512
Behera, B.
P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1
Behjat, P.
P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1
Benedikter, J.
J. Benedikter, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl., vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.7.024031
Benevides, R.
N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511
Benevides, R. S.
F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508
Benjamin, S. C.
S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .
Bernien, H.
W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58
H. Bernien, “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, pp. 86–90, May 2013. [Online]. Available: http://doi.org/10.1038/nature12016
H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604
L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401
L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013
Bersin, E.
Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8
Bertelli, I.
I. Bertelli, “Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator,” Sci. Adv., vol. 6, 2020, Art. no. . [Online]. Available: https://www.science.org/doi/10.1126/sciadv.abd3556
Beukers, H. K. C.
S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y
Bhaskar, M.
M. Bhaskar, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett., vol. 118, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.118.223603
Bhaskar, M. K.
M. K. Bhaskar, “Experimental demonstration of memory-enhanced quantum communication,” Nature, vol. 580, pp. 60–64, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2103-5
E. Janitz, M. K. Bhaskar, and L. Childress, “Cavity quantum electrodynamics with color centers in diamond,” Optica, vol. 7, no. 10, 2020, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.398628
Bhave, S. A.
E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602
Bienfait, A.
A. Bienfait, “Phonon-mediated quantum state transfer and remote qubit entanglement,” Science, vol. 364, no. 6438, pp. 368–371, 2019. [Online]. Available: https://doi.org/10.1126/science.aaw8415
Birnbaum, K. M.
A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603
Blais, A.
A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z
Blatt, R.
T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nature Photon., vol. 8, pp. 356–363, May 2014. [Online]. Available: http://doi.org/10.1038/nphoton.2014.53
D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281
Bloom, B.
H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601
Bluvstein, D.
D. Bluvstein, “A quantum processor based on coherent transport of entangled atom arrays,” Nature, vol. 604, pp. 451–456, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04592-6
D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101
Boca, A.
A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603
Bolshakov, A.
A. Bolshakov, “Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane,” Physica Status Solidi (a), vol. 212, pp. 2525–2532, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532174
Bonato, C.
A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031
Boozer, A. D.
A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603
Boretti, A.
S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications,” J. Physics: Photon., vol. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/2515-7647/ab77a2
Borregaard, J.
S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y
J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091
Borselli, M.
M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515
M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378
Boss, J. M.
J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0
J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009
Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638
Boto, E.
E. Boto, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, vol. 555, no. 7698, pp. 657–661, 2018. [Online]. Available: https://doi.org/10.1038/nature26147
Bouchard, L.-S.
V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801
Bourassa, A.
A. Bourassa, “Entanglement and control of single nuclear spins in isotopically engineered silicon carbide,” Nature Mater., vol. 19, no. 12, pp. 1319–1325, 2020. [Online]. Available: https://doi.org/10.1038/s41563-020-00802-6
E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844
Bradac, C.
C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w
Bradley, C. E.
C. E. Bradley, “A ten-qubit solid-state spin register with quantum memory up to one minute,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031045
Braje, D.
H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216
Brataas, A.
A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201
Brescia, R.
M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462
Brisinda, D.
R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291
Brodeur, A.
C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305
Brundage, T. O.
S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971
Bucher, D. B.
D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781
Budakian, R.
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.
Budker, D.
V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801
Bulu, I.
B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72
Burchard, B.
C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005
Burek, M. J.
M. J. Burek, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl., vol. 8, pp. 1–10, 2017. [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.024026
M. J. Burek, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6718
M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917
M. J. Burek, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett., vol. 12, no. 12, pp. 6084–6089, 2012. [Online]. Available: https://doi.org/10.1021/nl302541e
Burgwal, R.
A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066
L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601
Burkard, G.
G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863
G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026
Busch, T.
B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535
Butler, J. E.
R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950
C. Hryciw, A.
M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7
C. Waldermann, F.
F. C. Waldermann, “Creating diamond color centers for quantum optical applications,” Diamond Related Mater., vol. 16, pp. 1887–1895, 2007. [Online]. Available: https://doi.org/10.1016/j.diamond.2007.09.009
Cady, J. V.
J. V. Cady, “Diamond optomechanical crystals with embedded nitrogen-vacancy centers,” Quantum Sci. Technol., vol. 4, no. 2, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/ab043e
D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd
Camacho, R. M.
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524
Candido, D. R.
M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314
Cao, Y.
H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002
Cappellaro, P.
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002
Cardenas, J.
M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902
Carvalho, N. C.
N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511
A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601
P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1
Casola, F.
F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88
Castelletto, S.
S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications,” J. Physics: Photon., vol. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/2515-7647/ab77a2
I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501
Chakravarthi, S.
S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425
Challier, M.
M. Challier, “Advanced fabrication of single-crystal diamond membranes for quantum technologies,” Micromachines, vol. 9, 2018, Art. no. . [Online]. Available: https://doi.org/10.3390/mi9040148
Chan, J.
J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201
J. Chan, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011. [Online]. Available: http://www.nature.com/doifinder/10.1038/nature10461
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524
Chang, K.
R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659
Chatzidrosos, G.
G. Chatzidrosos, “Miniature cavity-enhanced diamond magnetometer,” Phys. Rev. Appl., vol. 8, no. 4, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.044019
Chayahara, A.
H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720
Chen, D.
D. Chen, “Quantum interference of resonance fluorescence from Germanium-vacancy color centers in diamond,” Nano Lett., vol. 22, no. 15, pp. 6306–6312, 2022. [Online]. Available: https://doi.org/10.1021/acs.nanolett.2c01959
D. Chen, “Optical gating of resonance fluorescence from a single germanium vacancy color center in diamond,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org10.1103/PhysRevLett.123.033602
Chen, E. H.
L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002
Chen, H. Y.
B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362
Chen, K. C.
L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402
Chen, X.-W.
X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545
Chen, Y.
Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb
Chen, Y.-C.
Y.-C. Chen, “Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield,” Optica, vol. 6, May 2019, Art. no. . [Online]. Available: http://doi.org/10.1364/OPTICA.6.000662
Y.-C. Chen, “Laser writing of coherent colour centres in diamond,” Nature Photon., vol. 11, pp. 77–80, 2017. [Online]. Available: http://doi.org/10.1038/nphoton.2016.234
Cheng, Y.
G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075
Cheung, H. F. H.
B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362
Chia, C.
C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826
Childress, L.
E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844
L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549
H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604
L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401
L. Childress, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science, vol. 314, pp. 281–285, 2006. [Online]. Available: https://doi.org/10.1126/science.1131871
E. Janitz, M. K. Bhaskar, and L. Childress, “Cavity quantum electrodynamics with color centers in diamond,” Optica, vol. 7, no. 10, 2020, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.398628
Cho, S. U.
F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993
Choi, H.
M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534
Chou, J.-P.
G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075
M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y
Chu, X.-L.
Chu, Y.
Y. Chu and S. Gröblacher, “A perspective on hybrid quantum opto- and electromechanical systems,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0021088
Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801
Y. Chu, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett., vol. 14, pp. 1982–1986, 2014. [Online]. Available:https://doi.org/10.1021/nl404836p
Clarke, J.
R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655
Clerk, A.
C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401
M. Woolley and A. Clerk, “Two-mode back-action-evading measurements in cavity optomechanics,” Phys. Rev. A, vol. 87, no. 6, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.87.063846
Clevenson, H.
H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216
Cohen, D.
D. Cohen, “Magnetoencephalography: Detection of the brain's electrical activity with a superconducting magnetometer,” Science, vol. 175, no. 4022, pp. 664–666, 1972. [Online]. Available: https://doi.org/10.1126/science.175.4022.664
Cohen, J. D.
J. D. Cohen, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature, vol. 520, no. 7548, pp. 522–525, 2015. [Online]. Available: https://doi.org/10.1038/nature14349
Cramer, J.
J. Cramer, “Repeated quantum error correction on a continuously encoded qubit by real-time feedback,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms11526
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2
Cui, S.
S. Cui and E. L. Hu, “Increased negatively charged nitrogen-vacancy centers in fluorinated diamond,” Appl. Phys. Lett., vol. 103, no. 5, 2013, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4817651
Cujia, K.
J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009
Cujia, K. S.
J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0
Curic, D.
D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242
Dadgostar, S.
M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001
Dahlberg, A.
Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8
Daiss, S.
S. Daiss, “A quantum-logic gate between distant quantum-network modules,” Science, vol. 371, no. 6529, pp. 614–617, 2021. [Online]. Available: https://doi.org/10.1126/science.abe3150
Dam, S. B. van
S. B. van Dam, “Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.161203
Dam, S. van
M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049
Damskägg, E.
C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401
Dantan, A.
M. Pinard and A. Dantan, “Quantum limits of photothermal and radiation pressure cooling of a movable mirror,” New J. Phys., vol. 10, no. 9, 2008, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/10/9/095012
Dartiailh, M.
B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602
Das, A.
A. Das, “Demonstration of hybrid high-Q hexagonal boron nitride microresonators,” ACS Photon., vol. 8, no. 10, pp. 3027–3033, 2021.
B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602
Davançço, M.
Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603
Davanço, M.
Davis, J. P.
P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640
B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303
P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165
De Boni, L.
J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4
de Oliveira Luiz, G.
G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386
Deák, P.
M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y
A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404
Debroux, R.
R. Debroux, “Quantum control of the tin-vacancy spin qubit in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.11.041041
Degen, C.
C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106
Degen, C. L.
P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548
E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H
J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0
J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002
Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638
R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659
Degen, M. J.
M. J. Degen, “Entanglement of dark electron-nuclear spin defects in diamond,” Nature Commun., vol. 12, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-021-23454-9
Delaney, P.
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001
Deleglise, S.
M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236
Deotare, P.
B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72
Deutsch, C.
D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721
Devoret, M. H.
M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, pp. 1169–1174, 2013. [Online]. Available: https://doi.org/10.1126/science.1231930
Dibos, A. M.
A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601
Diesch, S.
P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548
Dietrich, A.
A. Dietrich, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys., vol. 16, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/16/11/113019
Diler, B.
G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192
Dimock, M.
E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844
DiVincenzo, D. P.
D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, pp. 255–261, 1995. [Online]. Available: https://doi.org/10.1126/science.270.5234.255
Dobrovitski, V. V.
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2
T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602
Doherty, M. W.
Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001
Dolan, P. R.
P. R. Dolan, “Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity,” Opt. Exp., vol. 26, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.26.007056
S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003
P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556
Dolde, F.
F. Dolde, “Nanoscale detection of a single fundamental charge in ambient conditions using the $\text{NV}^-$ center in diamond,” Phys. Rev. Lett., vol. 112, no. 9, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.097603
F. Dolde, “Room-temperature entanglement between single defect spins in diamond,” Nature Phys., vol. 9, no. 3, pp. 139–143, 2013. [Online]. Available: http://doi.org/10.1038/nphys2545
Domhan, M.
F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501
Dong, C.
Doolin, C.
B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303
P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165
Dory, C.
S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010
C. Dory, “Inverse-designed diamond photonics,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-11343-1
Dowdell, D. A.
A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735
Dréau, A.
A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031
A. Dréau, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B, vol. 84, no. 19, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.84.195204
Duan, L.-M.
L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Modern Phys., vol. 82, pp. 1209–1224, 2010. [Online]. Available: https://doi.org/10.1103/RevModPhys.82.1209
Duine, R. A.
H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002
Dutt, M. V. G.
M. V. G. Dutt, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science, vol. 316, no. 5829, pp. 1312–1316, 2007. [Online]. Available: http://www.doi.org/10.1126/science.1139831
Dykman, M. I.
A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819
E. Barclay, P.
M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7
Eaton, S. M.
S. M. Eaton, “Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation,” Adv. Quantum Technol., vol. 2, no. 5/6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900006
Edmonds, A. M.
A. M. Edmonds, “Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications,” Mater. Quantum Technol., vol. 1, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/0.1088/2633-4356/abd88a
Eesley, G.
Egan, L.
L. Egan, “Fault-tolerant control of an error-corrected qubit,” Nature, vol. 598, pp. 281–286, 2021. [Online]. Available: https://doi.org/10.1038/s41586-021-03928-y
Eichenfield, M.
H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999
T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524
Eisenach, E. R.
E. R. Eisenach, “Cavity-enhanced microwave readout of a solid-state spin sensor,” Nature Commun., vol. 12, no. 1, pp. 1–7, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-21256-7
Ekert, A. K.
A. K. Ekert, “Quantum cryptography based on bell's theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, 1991. [Online]. Available: https://doi.org/10.1103/PhysRevLett.67.661
Elkouss, D.
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288
Engelsen, N. J.
O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176
Englund, D.
H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999
Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8
T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4
M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534
H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216
N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349
S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118
S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photon., vol. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4978204
I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186
M. E. Trusheim and D. Englund, “Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond,” New J. Phys., vol. 18, no. 12, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/aa5040
L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002
D. Englund, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett., vol. 10, pp. 3922–3926, 2010. [Online]. Available: https://doi.org/10.1021/nl101662v
Englund, D. R.
L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402
Espinel, Y. A.
F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508
Evans, R. E.
R. E. Evans, “Photon-mediated interactions between quantum emitters in a diamond nanocavity,” Science, vol. 362, pp. 662–665, 2018. [Online]. Available: https://doi.org/10.1126/science.aau4691
R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010
Fan, L.
L. Fan, “Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv., vol. 4, 2018, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aar4994
L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850
Faraon, A.
J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9
A. Faraon, “Quantum photonic devices in single-crystal diamond,” New J. Phys., vol. 15, no. 2, 2013, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/15/2/025010
A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604
A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52
K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023
P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007
Fedder, H.
M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818
Fehler, K. G.
K. G. Fehler, “Hybrid quantum photonics based on artificial atoms placed inside one hole of a photonic crystal cavity,” ACS Photon., vol. 8, pp. 2635–2641, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00530
Fenici, R.
R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291
Fiaschi, N.
A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066
Fink, J. M.
J. M. Fink, “Climbing the jaynes-cummings ladder and observing its $\sqrt{n}$ nonlinearity in a cavity qed system,” Nature, vol. 454, pp. 315–318, 2008. [Online]. Available: https://doi.org/10.1038/nature07112
Fiore, V.
Fischer, M.
M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462
Fitzpatrick, M.
Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263
Flågan, S.
S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577
D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036
Flatte, M. E.
M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314
Fong, K. Y.
L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850
Foretaste, N. C.
A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601
Forneris, J.
C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w
Forsch, M.
M. Forsch, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nature Phys., vol. 16, no. 1, pp. 69–74, 2020. [Online]. Available: https://doi.org/10.1038/s41567-019-0673-7
Frank, I. W.
M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917
Frateschi, N. C.
N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511
Frauenheim, T.
M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y
Freeman, M. R.
G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386
J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb
P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640
Frenner, K.
M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818
Fröch, J. E.
B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A
J. E. Fröch, “Versatile direct-writing of dopants in a solid state host through recoil implantation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-020-18749-2
Frommer, J.
M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839
Fu, K.
K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135
Fu, K.-M. C.
S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425
M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001
N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.
K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023
A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52
P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007
P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948
K.-M. C. Fu, “Coupling of nitrogen-vacancy centers in diamond to a gap waveguide,” Appl. Phys. Lett., vol. 93, no. 23, 2008, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3045950
Fuchs, G. D.
B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362
E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358
E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602
G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026
D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q
Fuechsle, M.
M. Fuechsle, “A single-atom transistor,” Nature Nanotechnol., vol. 7, pp. 242–246, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.21
Fukami, M.
M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314
Furusawa, A.
J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229
Gaebel, T.
F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501
Gali, A.
G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075
G. Thiering and A. Gali, “Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond,” Phys. Rev. X, vol. 8, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.8.021063
M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y
A. Gali and J. R. Maze, “Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties,” Phys. Rev. B, vol. 88, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.88.235205
A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404
Gali, Á.
Á. Gali, “Ab initio theory of the nitrogen-vacancy center in diamond,” Nanophotonics, vol. 8, pp. 1907–1943, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0154
Galli, G.
W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266
Gao, W.
C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w
Gao, W. B.
W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58
Genes, C.
P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14
Gerhardt, I.
M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818
Gerlach, W.
W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik, vol. 9, pp. 349–352, 1922. [Online]. Available: http://doi.org/10.1007/BF01326983
Ghobadi, R.
R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825
Ghosh, S.
H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601
Giovannetti, S. L. Vittorio
S. L. Vittorio Giovannetti and L. Maccone, “Quantum metrology,” Phys. Rev. Lett., vol. 96, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.96.010401
Giovannetti, V.
V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149
Girvin, S. M.
A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715
Gisin, N.
N. Gisin and R. Thew, “Quantum communication,” Nature Photon., vol. 1, pp. 165–171, 2007. [Online]. Available: http://doi.org/10.1038/nphoton.2007.22
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145
Glenn, D. R.
D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781
Gloppe, A.
B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603
Glover, P.
P. Glover and P. Mansfield, “Limits to magnetic resonance microscopy,” Rep. Prog. Phys., vol. 65, no. 10, 2002, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/65/10/203
Golter, D. A.
D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060
Görlitz, J.
J. Görlitz, “Spectroscopic investigations of negatively charged tin-vacancy centres in diamond,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab6631
J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512
Gorodetsky, M. L.
M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236
Gosavi, T. A.
E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602
Götzinger, S.
X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545
Gould, M.
M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001
M. Gould, “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. America B, vol. 33, no. 3, pp. B35–B42, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B35
Graham, T. M.
T. M. Graham, “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer,” Nature, vol. 604, pp. 457–462, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04603-6
Gray, S. K.
E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358
Graziosi, T.
T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316
Grazioso, F.
P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556
Greentree, A. D.
I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501
C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240
Greuter, L.
L. Greuter, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4896415
Grinolds, M. S.
M. S. Grinolds, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nature Nanotechnol., vol. 9, pp. 279–284, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.30
Gröblacher, S.
S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0
A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066
Y. Chu and S. Gröblacher, “A perspective on hybrid quantum opto- and electromechanical systems,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0021088
A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z
Grotz, B.
B. Grotz, “Charge state manipulation of qubits in diamond,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1729
Gruber, A.
F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501
Gsell, S.
M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462
Guidry, M. A.
D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102
H. Abobeih, M.
M. H. Abobeih, “Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor,” Nature, vol. 576, no. 7787, pp. 411–415, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1834-7
H. Taminiau, T.
T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602
Häberle, T.
T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299
Hackett, L.
T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4
Hadden, J. P.
J. P. Hadden, “Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.43.003586
J. P. Hadden, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett., vol. 97, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3519847
Hainzer, H.
V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3
Hajisalem, G.
G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386
Hakonen, P. J.
F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993
Hammerer, K.
P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14
Hanson, R.
S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y
M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534
M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288
D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2
A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031
N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330
W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2
H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604
T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602
L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401
L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217
Haque, A.
A. Haque and S. Sumaiya, “An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation,” J. Manuf. Mater. Process., vol. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.3390/jmmp1010006
Harris, J. G. E.
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715
Harrison, J.
N. Manson and J. Harrison, “Photo-ionization of the nitrogen-vacancy center in diamond,” Diamond Related Mater., vol. 14, no. 10, pp. 1705–1710, 2005. [Online]. Available: https://doi.org/10.1016/j.diamond.2005.06.027
Harrison, J. P.
N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303
Hase, M.
M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217
Hatami, F.
M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001
Hatano, M.
P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840
Hauer, B. D.
B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303
P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165
Hauf, M. V.
M. V. Hauf, “Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures,” Nano Lett., vol. 14, no. 5, pp. 2359–2364, 2014. [Online]. Available: https://doi.org/10.1021/nl4047619
M. V. Hauf, “Chemical control of the charge state of nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 83, no. 8, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.83.081304
Hausmann, B.
B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72
Hausmann, B. J.
B. J. Hausmann, “Coupling of $\text {NV}$ centers to photonic crystal nanobeams in diamond,” Nano Lett., vol. 13, pp. 5791–5796, 2013. [Online]. Available: https://doi.org/10.1021/nl402174g
B. J. Hausmann, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Related Mater., vol. 19, no. 5, pp. 621–629, 2010. [Online]. Available: https://doi.org/10.1016/j.diamond.2010.01.011
Häußler, S.
S. Häußler, “Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.165310
Hedrich, N.
N. Hedrich, “Nanoscale mechanics of antiferromagnetic domain walls,” Nature Phys., vol. 17, pp. 574–577, 2021. [Online]. Available: http://doi.org/10.1038/s41567-020-01157-0
N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007
Heikkilä, T. T.
F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993
Hensen, B.
A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z
B. Hensen, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–686, 2015. [Online]. Available: http://doi.org/10.1038/nature15759
L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401
Hepp, C.
C. Hepp, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett., vol. 112, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.036405
Herb, K.
E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H
Heremans, F. J.
G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192
Hermans, S. L. N.
S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y
Hicks, M. L.
M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010
Hill, J. T.
J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201
Hingant, T.
L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503
Hirano, S.
S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7
Ho, K. O.
K. O. Ho, “Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy ($\text {NV})$ center in diamond,” J. Appl. Phys., vol. 129, no. 24, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0052233
Hofmann, J.
J. Hofmann, “Heralded entanglement between widely separated atoms,” Science, vol. 336, no. 6090, pp. 72–75, 2012. [Online]. Available: https://doi.org/10.1126/science.1221856
Hollenberg, L. C.
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001
Hollenberg, L. C. L.
C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240
Hong, Z.
L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299
Horsley, A.
Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb
Hosten, O.
O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176
Hryciw, A. C.
B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051
B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346
M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999
Hu, E. L.
S. Cui and E. L. Hu, “Increased negatively charged nitrogen-vacancy centers in fluorinated diamond,” Appl. Phys. Lett., vol. 103, no. 5, 2013, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4817651
Huan, Y. Q.
J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9
Huang, C.
C. Huang, “Anisotropy effects in diamond under nanoindentation,” Carbon, vol. 132, pp. 606–615, 2018. [Online]. Available: https://doi.org/10.1016/j.carbon.2018.02.066
Huang, D.
D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081
Huang, Z.
A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604
Hughes, G. M.
P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556
Humphreys, P. C.
P. C. Humphreys, “Deterministic delivery of remote entanglement on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273, 2018. [Online]. Available: http://doi.org/10.1038/s41586-018-0200-5
N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330
Hunger, D.
D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721
Huxter, W. S.
E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H
Imamoglu, A.
W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58
Ishikawa, T.
T. Ishikawa, “Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer,” Nano Lett., vol. 12, pp. 2083–2087, 2012. [Online]. Available: https://doi.org/10.1021/nl300350r
Ishizu, S.
S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187
Itoh, K. M.
S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187
J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0
Ivanov, A.
S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425
Iwasaki, T.
P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840
T. Iwasaki, “Tin-vacancy quantum emitters in diamond,” Phys. Rev. Lett., vol. 119, no. 25, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.253601
T. Iwasaki, “Germanium-vacancy single color centers in diamond,” Sci. Rep., vol. 5, no. 1, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/srep12882
J. Mamin, H.
H. J. Mamin, “Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor,” Science, vol. 339, no. 6119, pp. 557–560, 2013. [Online]. Available: https://doi.org/10.1126/science.1231540
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.
J. T. Wagenaar, J.
T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602
Jackman, R. B.
M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010
Jacques, V.
B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603
L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503
O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070
Jahnke, K. D.
K. D. Jahnke, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys., vol. 17, no. 4, 2015, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/17/4/043011
Jakubczyk, T.
S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577
Jamali, M.
M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818
Janitz, E.
E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H
E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844
E. Janitz, M. K. Bhaskar, and L. Childress, “Cavity quantum electrodynamics with color centers in diamond,” Optica, vol. 7, no. 10, 2020, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.398628
Janzén, E.
A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404
Javadi, A.
S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577
Jayakumar, H.
D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242
B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051
Jayich, A. B.
B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602
Jayich, A. Bleszynski
P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274
Jayich, A. C. B.
J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196
D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101
D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd
P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429
Jayich, A. M.
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715
Jelezko, F.
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001
T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812
F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501
Jensen, R. Høy
R. Høy Jensen, “Cavity-enhanced photon emission from a single germanium-vacancy center in a diamond membrane,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.064016
Joannopoulos, J. D.
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9
Johnson, K.
H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216
Johnson, S.
S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003
S. Johnson, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys., vol. 17, 2015, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/17/12/122003
Johnson, S. G.
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9
Johnson, T. J.
M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515
Jones, R.
H. Pinto and R. Jones, “Theory of the birefringence due to dislocations in single crystal CVD diamond,” J. Physics: Condens. Matter, vol. 21, no. 36, 2009, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0953-8984/21/36/364220
Jorio, A.
Jung, T.
T. Jung, “Spin measurements of NV centers coupled to a photonic crystal cavity,” APL Photon., vol. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5120120
Jungwirth, N. R.
E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602
Kainuma, Y.
M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217
Kalaee, M.
M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6
Kalb, N.
N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330
N. Kalb, “Entanglement distillation between solid-state quantum network nodes,” Science, vol. 356, no. 6341, pp. 928–932, 2017. [Online]. Available: http://doi.org/10.1126/science.aan0070
Kalish, R.
I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018
Kamaliddin, Y.
D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516
Kamra, A.
H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002
Kasevich, M. A.
O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176
Kasperczyk, M.
M. Kasperczyk, “Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures,” Phys. Rev. B, vol. 102, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.102.075312
A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102
Kasu, M.
S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7
Kato, Y.
H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720
Kaupp, H.
H. Kaupp, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.054010
Kaviani, H.
R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825
B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051
Kaviani, M.
M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y
Kaxiras, E.
A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404
Kazi, Z.
S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425
Kersul, C. M.
A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601
Ketterson, J. B.
L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299
Khanaliloo, B.
B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051
B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346
M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7
Kharel, P.
P. Kharel, “High-frequency cavity optomechanics using bulk acoustic phonons,” Sci. Adv., vol. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aav0582
Khasminskaya, S.
P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710
Kianinia, M.
M. Kianinia and I. Aharonovich, “Diamond photonics is scaling up,” Nature Photon., vol. 14, pp. 599–600, 2020. [Online]. Available: https://doi.org/10.1038/s41566-020-0695-9
Kikuchi, D.
D. Kikuchi, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Exp., vol. 10, 2017, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.7567/APEX.10.103004
Kim, M.
M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839
Kim, P. H.
B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303
P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640
P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165
Kim, S.
B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A
Kim, S.-W.
S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7
Kimble, H. J.
H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008. [Online]. Available: http://doi.org/10.1038/nature07127
A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603
Kindem, J. M.
J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9
Kippenberg, T. J.
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391
M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236
Kiss, M.
T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316
Kleiner, R.
R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655
Klimov, P. V.
G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026
Knall, E. N.
E. N. Knall, “Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System,” Phys. Rev. Lett., vol. 129, no. 5, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.129.053603
Koehl, W. F.
W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266
Koelle, D.
R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655
Kok, P.
S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A, vol. 71, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.71.060310
Kölbl, J.
A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102
J. Kölbl, “Initialization of single spin dressed states using shortcuts to adiabaticity,” Phys. Rev. Lett., vol. 122, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.090502
Kómár, P.
P. Kómár, “A quantum network of clocks,” Nature Phys., vol. 10, no. 8, pp. 582–587, 2014. [Online]. Available: http://doi.org/10.1038/nphys3000
Körber, R.
R. Körber, “SQUIDS in biomagnetism: A roadmap towards improved healthcare,” Supercond. Sci. Technol., vol. 29, no. 11, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/0953-2048/29/11/113001
Kosaka, H.
H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888
Kouwenhoven, L. P.
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217
Kovalev, A. A.
A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201
Krastanov, S.
H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999
Krcmarsky, V.
V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3
Kresse, G.
A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404
Krinner, S.
S. Krinner, “Realizing repeated quantum error correction in a distance-three surface code,” Nature, vol. 605, no. 7911, pp. 669–674, 2022. [Online]. Available: http://doi.org/10.1038/s41586-022-04566-8
Krishnakumar, R.
O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176
Krutyanskiy, V.
V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3
Ku, M. J.
M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed
Kurokawa, H.
H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888
Kurtsiefer, C.
C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005
Kuruma, K.
K. Kuruma, “Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond,” Appl. Phys. Lett., vol. 118, no. 23, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0051675
Kuwabara, A.
T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304
Kuzyk, M. C.
M. C. Kuzyk and H. Wang, “Controlling multimode optomechanical interactions via interference,” Phys. Rev. A, vol. 96, no. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.96.023860
Ladd, T. D.
G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812
Laer, R. Van
A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213
Laflamme, R.
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812
Lake, D. P.
B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234
P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3
D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w
D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x
M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122
M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832
D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516
D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242
B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051
Lambert, N. J.
N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077
Lang, A.
A. Lang, “The strain-optical constants of diamond: A brief history of measurements,” Diamond Related Mater., vol. 18, no. 1, pp. 1–5, 2009. [Online]. Available: https://doi.org/10.1016/j.diamond.2008.07.020
Lang, J.
J. Lang, “Long optical coherence times of shallow-implanted, negatively charged silicon vacancy centers in diamond,” Appl. Phys. Lett., vol. 116, no. 6, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/1.5143014
Langenfeld, S.
S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506
S. Langenfeld, “Quantum teleportation between remote qubit memories with only a single photon as a resource,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.130502
Lanyon, B. P.
V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3
Latawiec, P.
P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318
Lauk, N.
N. Lauk, “Perspectives on quantum transduction,” Quantum Sci. Technol., vol. 5, no. 2, 2020, Art. no. . [Online]. Available: http://doi.org/10.1088/2058-9565/ab788a
Lauria, P.
P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274
Ledbetter, M. P.
V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801
Lee, D.
D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd
Lee, J.
D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781
Lee, K. G.
K. G. Lee, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photon., vol. 5, pp. 166–169, 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2010.312
Lee, K. W.
D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd
P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429
Lee, M. L.
N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.
Lee, Y.
Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8
Leent, T. van
T. van Leent, “Entangling single atoms over 33 km telecom fibre,” Nature, vol. 607, no. 7917, pp. 69–73, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04764-4
Lehnert, K. W.
C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys.: Conf. Ser., vol. 264, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1742-6596/264/1/012025
Leibfried, D.
D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281
Lekavicius, I.
H. Wang and I. Lekavicius, “Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0024001
D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060
Lemonde, M.-A.
M.-A. Lemonde, “Phonon networks with silicon-vacancy centers in diamond waveguides,” Phys. Rev. Lett., vol. 120, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.213603
Leon, N. P. de
D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081
Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263
Lepinay, L. Mercier de
B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603
Levenson, M. D.
Levonian, D.
D. Levonian, “Optical entanglement of distinguishable quantum emitters,” Phys. Rev. Lett., vol. 128, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.128.213602
Ley, L.
F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411
Li, L.
L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002
L. Li, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms7173
Liao, S.-K.
S.-K. Liao, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.120.030501
Lim, J. Y.
Lin, G.
Lipson, M.
M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902
Liu, Y.
Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603
Lloyd, S.
V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149
Lodahl, P.
J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091
Loncar, M.
C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826
P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318
B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72
M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917
Loretz, M.
R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659
Losby, J. E.
G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386
J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb
Lovett, B. W.
S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .
Lu, C.-H.
C.-H. Lu, “Generation of octave-spanning supercontinuum by Raman-assisted four-wave mixing in single-crystal diamond,” Opt. Exp., vol. 22, no. 4, pp. 4075–4082, 2014. [Online]. Available: https://doi.org/10.1364/OE.22.004075
Luan, L.
L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299
Ludwig, F.
R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655
Luiz, G. O.
F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508
Lukin, D. M.
D. M. Lukin, “Optical superradiance of a pair of color centers in an integrated silicon-carbide-on-insulator microresonator,” 2022, arXiv:2202.04845. [Online]. Available: https://doi.org/10.48550/arXiv.2202.04845
D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102
Lukin, M.
L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549
Lukin, M. D.
D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781
R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010
Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801
K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501
Lux, O.
O. Lux, “Multi-octave frequency comb generation by $\chi$ (3)-nonlinear optical processes in CVD diamond at low temperatures,” Laser Phys. Lett., vol. 11, no. 8, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1612-2011/11/8/086101
MacCabe, G. S.
G. S. MacCabe, “Nano-acoustic resonator with ultralong phonon lifetime,” Science, vol. 370, no. 6518, pp. 840–843, 2020. [Online]. Available: https://doi.org/10.1126/science.abc7312
Maccone, L.
S. L. Vittorio Giovannetti and L. Maccone, “Quantum metrology,” Phys. Rev. Lett., vol. 96, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.96.010401
V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149
MacDonald, N. C.
K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.
Machielse, B.
C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826
B. Machielse, “Quantum interference of electromechanically stabilized emitters in nanophotonic devices,” Phys. Rev. X, vol. 9, no. 3, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031022
MacQuarrie, E. R.
E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358
E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602
Madsen, L. S.
L. S. Madsen, “Quantum computational advantage with a programmable photonic processor,” Nature, vol. 606, pp. 75–81, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04725-x
Magnard, P.
P. Magnard, “Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.260502
Mahdaoui, A. E.
A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031
Maier, F.
F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411
Maity, S.
S. Maity, “Coherent acoustic control of a single silicon vacancy spin in diamond,” Nature Commun., vol. 11, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-019-13822-x
Maletinsky, P.
S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577
N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007
D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036
A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102
A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411
L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503
J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503
P. Maletinsky, “A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres,” Nature Nanotechnol., vol. 7, pp. 320–324, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.50
Mamin, H.
C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106
Mamin, H. J.
M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839
Mansfield, P.
P. Glover and P. Mansfield, “Limits to magnetic resonance microscopy,” Rep. Prog. Phys., vol. 65, no. 10, 2002, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/65/10/203
Manson, N.
N. Manson and J. Harrison, “Photo-ionization of the nitrogen-vacancy center in diamond,” Diamond Related Mater., vol. 14, no. 10, pp. 1705–1710, 2005. [Online]. Available: https://doi.org/10.1016/j.diamond.2005.06.027
Manson, N. B.
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001
N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303
Marinkovic, I.
A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z
Markham, M.
P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318
J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512
Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801
H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604
Marquardt, F.
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715
Marseglia, L.
L. Marseglia, “Bright nanowire single photon source based on SiV centers in diamond,” Opt. Exp., vol. 26, no. 1, pp. 80–89, 2018. [Online]. Available: https://doi.org/10.1364/OE.26.000080
L. Marseglia, “Nanofabricated solid immersion lenses registered to single emitters in diamond,” Appl. Phys. Lett., vol. 98, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573870
Marshall, M. C.
M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed
Martin, A. A.
T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229
Martínez, A.
L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601
Massel, F.
F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993
Masuda, T.
Maurer, P. C.
P. C. Maurer, “Room-temperature quantum bit memory exceeding one second,” Science, vol. 336, no. 6086, pp. 1283–1286, 2012. [Online]. Available: http://doi.org/10.1126/science.1220513
Maze, J. R.
A. Gali and J. R. Maze, “Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties,” Phys. Rev. B, vol. 88, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.88.235205
J. R. Maze, “Properties of nitrogen-vacancy centers in diamond: The group theoretic approach,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025025
Mazur, E.
C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305
McCullian, B. A.
B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362
McKeever, J.
A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603
McLaughlin, B.
B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234
Meade, R. D.
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9
Meesala, S.
S. Meesala, “Strain engineering of the silicon-vacancy center in diamond,” Phys. Rev. B, vol. 97, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.97.205444
S. Meesala, “Enhanced strain coupling of nitrogen-vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl., vol. 5, no. 3, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.034010
Meijer, J.
J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196
S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024
J. Meijer, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett., vol. 87, 2005, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2103389
Meloni, A. M.
R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291
Ménard, M.
N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511
Mendonça, C. R.
J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4
Meraner, M.
V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3
Mercadé, L.
L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601
Meyler, B.
I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018
Meynell, S. A.
S. A. Meynell, “Engineering quantum-coherent defects: The role of substrate miscut in chemical vapor deposition diamond growth,” Appl. Phys. Lett., vol. 117, no. 19, 2020, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0029715
J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196
Mi, S.
T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316
Mildren, R. P.
R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950
R. P. Mildren, Intrinsic Optical Properties of Diamond.Hoboken, NJ, USA: Wiley, 2013, pp. 1–34. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527648603.ch1
Miller, R.
A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603
Mirhosseini, M.
M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6
Misonou, D.
S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187
Mitchell, M.
B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234
D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w
D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x
M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832
M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122
D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516
D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242
B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346
M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999
Mitchell, M. J.
P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3
Miyamoto, Y.
P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840
Moehring, D. L.
D. L. Moehring, “Entanglement of single-atom quantum bits at a distance,” Nature, vol. 449, no. 7158, pp. 68–71, 2007. [Online]. Available: http://doi.org/10.1038/nature06118
Mokuno, Y.
H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720
Møller, C. B.
W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114
Momenzadeh, S. A.
S. A. Momenzadeh, “Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers,” Nano Lett., vol. 15, pp. 165–169, 2015. [Online]. Available: https://doi.org/10.1021/nl503326t
Monroe, C.
L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Modern Phys., vol. 82, pp. 1209–1224, 2010. [Online]. Available: https://doi.org/10.1103/RevModPhys.82.1209
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812
D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281
Monteiro, T. S.
O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214
Moores, B. A.
Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638
Morin, O.
P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5
S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506
Moser, J.
A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819
Motojima, M.
M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217
Mouradian, S.
N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349
S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118
Mouradian, S. L.
S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photon., vol. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4978204
S. L. Mouradian, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.031009
Mu, W.
L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299
Muniz, S. R.
J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4
Munsch, M.
M. Munsch, “Resonant driving of a single photon emitter embedded in a mechanical oscillator,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-017-00097-3
Myers, B.
P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274
Myers, B. A.
P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429
B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602
Najer, D.
D. Najer, “A gated quantum dot strongly coupled to an optical microcavity,” Nature, vol. 575, no. 7784, pp. 622–627, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1709-y
D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458
Nakamura, Y.
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812
Narang, P.
T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4
Narita, Y.
Y. Narita, “Identical photons from multiple tin-vacancy centers in diamond,” 2022, arXiv:2208.06275. [Online]. Available: https://doi.org/10.48550/arXiv.2208.06275
Naydenov, B.
B. Naydenov, “Increasing the coherence time of single electron spins in diamond by high temperature annealing,” Appl. Phys. Lett., vol. 97, no. 24, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3527975
Nebel, C.
P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494
P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710
Nelz, R.
R. Nelz, “Toward wafer-scale diamond nano- and quantum technologies,” APL Mater., vol. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5067267
Neu, E.
J. N. Becker and E. Neu, “The silicon vacancy center in diamond,” vol. 103, pp. 201–235, 2020. [Online]. Available: https://doi.org/10.1016/bs.semsem.2020.04.001
D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036
A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411
E. Neu, “Photonic nano-structures on (111)-oriented diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4871580
J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503
I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater., vol. 2, pp. 911–928, 2014. [Online]. Available: http://doi.org/10.1002/adom.201400189
E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956
Neuman, T.
T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4
Neumann, P.
P. Neumann, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett., vol. 13, no. 6, pp. 2738–2742, 2013. [Online]. Available: https://doi.org/10.1021/nl401216y
Newell, A. N.
A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735
Nguyen, C. T.
C. T. Nguyen, “An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond,” Phys. Rev. B, vol. 100, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.100.165428
C. T. Nguyen, “Quantum network nodes based on diamond qubits with an efficient nanophotonic interface,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.183602
Nguyen, M.
M. Nguyen, “Photodynamics and quantum efficiency of germanium vacancy color centers in diamond,” Adv. Photon., vol. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1117/1.AP.1.6.066002
Nichol, J. M.
G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863
Nielsen, W. H. P.
W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114
Northup, T. E.
T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nature Photon., vol. 8, pp. 356–363, May 2014. [Online]. Available: http://doi.org/10.1038/nphoton.2014.53
Novotny, L.
Nunnenkamp, A.
A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411
Oba, F.
T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304
O'Brien, J. L.
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812
J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229
Ockeloen-Korppi, C.
C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401
Ocola, L. E.
L. E. Ocola and A. Stein, “Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness,” J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct., vol. 24, no. 6, pp. 3061–3065, 2006. [Online]. Available: https://doi.org/10.1116/1.2366698
Ofori-Okai, B.
B. Ofori-Okai, “Spin properties of very shallow nitrogen vacancy defects in diamond,” Phys. Rev. B, vol. 86, no. 8, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.86.081406
Ohno, K.
B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602
K. Ohno, “Engineering shallow spins in diamond with nitrogen delta-doping,” Appl. Phys. Lett., vol. 101, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4748280
Okawachi, Y.
Oliveira, F. Fávaro de
F. Fávaro de Oliveira, “Tailoring spin defects in diamond by lattice charging,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15409
F. Fávaro de Oliveira, “Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 107, no. 7, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4929356
Oliver, W. D.
A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z
Oncebay, C.
J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4
Oo, T.
D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060
Opaluch, O. R.
D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036
Orphal-Kobin, L.
L. Orphal-Kobin, “Optically coherent nitrogen-vacancy defect centers in diamond nanostructures,” 2022, arXiv:2203.05605. [Online]. Available: https://doi.org/10.48550/arXiv.2203.05605
Orwa, J. O.
J. O. Orwa, “An upper limit on the lateral vacancy diffusion length in diamond,” Diam. Relat. Mater., vol. 24, 2012, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2012.02.009
J. O. Orwa, “Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing,” J. Appl. Phys., vol. 109, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573768
Osterkamp, C.
C. Osterkamp, “Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF$_{6}$ plasma treatment,” Appl. Phys. Lett., vol. 106, no. 11, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4915305
Otten, M.
E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358
Ovartchaiyapong, P.
D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd
P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429
P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274
P. Davis, J.
M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7
Painter, O.
M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6
J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524
P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801
M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515
M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378
Pakpour-Tabrizi, A. C.
M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010
Palm, M. L.
P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548
Pan, A.
G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863
Park, H.
D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781
Pascal, L.
P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274
Patel, P.
M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917
Paternostro, M.
S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0
Patton, B. R.
P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556
Pederson, C.
S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425
Pelka, K.
L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601
Pernice, W.
P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710
Pernice, W. H.
P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494
Petráková, V.
V. Petráková, “Luminescence of nanodiamond driven by atomic functionalization: Towards novel detection principles,” Adv. Funct. Mater., vol. 22, no. 4, pp. 812–819, 2012. [Online]. Available: https://doi.org/10.1002/adfm.201101936
Petta, J. R.
G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863
S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217
Pezzagna, S.
S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024
S. Pezzagna, “Nanoscale engineering and optical addressing of single spins in diamond,” Small, vol. 6, pp. 2117–2121, 2010. [Online]. Available: https://doi.org/10.1002/smll.201000902
Pfaff, W.
W. Pfaff, “Unconditional quantum teleportation between distant solid-state quantum bits,” Science, vol. 345, no. 6196, pp. 532–535, 2014. [Online]. Available: https://doi.org/10.1126/science.1253512
Pfender, M.
M. Pfender, “Protecting a diamond quantum memory by charge state control,” Nano Lett., vol. 17, no. 10, pp. 5931–5937, 2017. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b01796
Pham, L. M.
H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216
Phenicie, C. M.
A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601
Phillips, D. F.
M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed
Pigeau, B.
B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603
Pinard, M.
M. Pinard and A. Dantan, “Quantum limits of photothermal and radiation pressure cooling of a movable mirror,” New J. Phys., vol. 10, no. 9, 2008, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/10/9/095012
Pingault, B.
B. Pingault, “Coherent control of the silicon-vacancy spin in diamond,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15579
Pinto, H.
H. Pinto and R. Jones, “Theory of the birefringence due to dislocations in single crystal CVD diamond,” J. Physics: Condens. Matter, vol. 21, no. 36, 2009, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0953-8984/21/36/364220
Pirkkalainen, J.-M.
C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401
F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993
Poggio, M.
P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14
C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106
Poluektov, O. G.
G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192
Polzik, E. S.
W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114
Pompili, M.
S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y
M. Pompili, “Experimental demonstration of entanglement delivery using a quantum network stack,” NPJ Quantum Inf., vol. 8, 2022, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-022-00631-2
M. Pompili, “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, 2021. [Online]. Available: http://doi.org/10.1126/science.abg1919
Poncharal, P.
O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070
Pontin, A.
A. Pontin, “Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system,” Phys. Rev. Lett., vol. 116, no. 10, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.103601
Poot, M.
L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850
Popa, I.
F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501
Povinelli, M.
M. Povinelli, “Evanescent-wave bonding between optical waveguides,” Opt. Lett., vol. 30, no. 22, 2005, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.30.003042
Prawer, S.
I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501
Primo, A. G.
A. G. Primo, “Accurate modeling and characterization of photothermal forces in optomechanics,” APL Photon., vol. 6, no. 8, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0055201
A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601
Pscherer, A.
A. Pscherer, “Single-molecule vacuum Rabi splitting: Four-wave mixing and optical switching at the single-photon level,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.133603
Purcell, E. M.
E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, 1946, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRev.69.674.2
Quack, N.
T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316
R. Freeman, M.
M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7
Rabeau, J. R.
R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950
Rabl, P.
P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14
K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501
Radko, I. P.
I. P. Radko, “Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond,” Opt. Exp., vol. 24, 2016, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.24.027715
Raha, M.
D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081
A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601
Ralchenko, V.
J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354
Ramos, D.
M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917
Randall, J.
O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214
Rani, D.
D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036
Raniwala, H.
H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999
Rath, P.
P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494
P. Rath, “Diamond electro-optomechanical resonators integrated in nanophotonic circuits,” Appl. Phys. Lett., vol. 105, no. 25, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4901105
P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710
Regal, C. A.
S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0
C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys.: Conf. Ser., vol. 264, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1742-6596/264/1/012025
Regan, B.
B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A
Reichel, J.
D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721
Reinhard, F.
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002
T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299
Reiserer, A.
A. Reiserer, “Robust quantum-network memory using decoherence-protected subspaces of nuclear spins,” Phys. Rev. X, vol. 6, no. 2, 2016, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.6.021040
A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Modern Phys., vol. 87, pp. 1379–1418, 2015. [Online]. Available: https://doi.org/10.1103/RevModPhys.87.1379
Rempe, G.
P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5
S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506
A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Modern Phys., vol. 87, pp. 1379–1418, 2015. [Online]. Available: https://doi.org/10.1103/RevModPhys.87.1379
Renggli, M.
D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458
Rettner, C.
C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106
Rettner, C. T.
M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839
Rezai, M.
M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818
Ribordy, G.
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145
Riedel, D.
S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577
S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010
D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036
D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458
D. Riedel, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X, vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.7.031040
D. Riedel, “Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond,” Phys. Rev. Appl., vol. 2, 2014, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.2.064011
Riedrich-Möller, J.
J. Riedrich-Möller, “Nanoimplantation and purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett., vol. 106, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4922117
J. Riedrich-Möller, “Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond,” Nano Lett., vol. 14, no. 9, pp. 5281–5287, 2014. [Online]. Available: http://doi.org/10.1021/nl502327b
J. Riedrich-Möller, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nature Nanotechnol., vol. 7, pp. 69–74, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2011.190
Ristein, J.
F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411
Ritter, S.
S. Ritter, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012. [Online]. Available: http://doi.org/10.1038/nature11023
Robledo, L.
H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604
L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401
L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013
Roch, J.-F.
L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503
Rochman, J.
J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9
Rodgers, L. V. H.
Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263
Rogalla, D.
S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024
Rogers, L.
L. Rogers, “Multiple intrinsically identical single-photon emitters in the solid state,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms5739
Rogers, L. J.
L. J. Rogers, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.263602
Rohner, D.
N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007
Rohr, S.
B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603
Rondin, L.
L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503
L. Rondin, “Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds,” Phys. Rev. B, vol. 82, no. 11, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.82.115449
Rong, X.
X. Rong, “Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions,” Nature Commun., vol. 6, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms9748
Rong, Y.
Y. Rong, “Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation,” Opt. Lett., vol. 44, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.44.003793
Rose, B. C.
B. C. Rose, “Observation of an environmentally insensitive solid-state spin defect in diamond,” Science, vol. 361, pp. 60–63, 2018. [Online]. Available: https://www.doi.org/10.1126/science.aao0290
Rueda, A.
N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077
Ruf, M.
M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534
M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049
M. Ruf, “Optically coherent nitrogen-vacancy centers in micrometer-thin etched diamond membranes,” Nano Lett., vol. 19, pp. 3987–3992, 2019. [Online]. Available: http://doi.org/10.1021/acs.nanolett.9b01316
E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844
Rugar, A. E.
A. E. Rugar, “Quantum photonic interface for tin-vacancy centers in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevX.11.031021
S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010
A. E. Rugar, “Narrow-linewidth tin-vacancy centers in a diamond waveguide,” ACS Photon., vol. 7, pp. 2356–2361, 2020. [Online]. Available: https://doi.org/10.1021/acsphotonics.0c00833
A. E. Rugar, “Generation of tin-vacancy centers in diamond via shallow ion implantation and subsequent diamond overgrowth,” Nano Lett., vol. 20, pp. 1614–1619, 2020. [Online]. Available: https://doi.org/10.1021/acs.nanolett.9b04495
Rugar, D.
D. Rugar, “Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor,” Nature Nanotechnol., vol. 10, pp. 120–124, 2015. [Online]. Available: http://doi.org/10.1038/nnano.2014.288
M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839
C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.
Ruscio, L.
P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5
Ruskov, R.
Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502
Ruskuc, A.
J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9
Sørensen, A. S.
J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091
Saada, S.
J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354
Safavi-Naeini, A. H.
A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213
J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201
Salzman, J.
I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018
Sanders, B. C.
D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x
Sandoghdar, V.
X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545
Sangtawesin, S.
Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263
S. Sangtawesin, “Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031052
S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971
Sani, F. F.
P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640
Sankey, J.
E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844
Santamore, D. H.
A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735
Santis, L. D.
L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402
Santori, C.
A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604
K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023
A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52
P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007
K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135
P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948
Santos, F. G.
F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508
Santos, L. F. dos
D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242
Sar, T. V. D.
L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013
Sar, T. van der
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2
T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602
Sarma, B.
B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535
Sasaki, K.
S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187
J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0
Sauer, V. T.
G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386
Sauer, V. T. K.
J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb
Schaeper, O. C.
B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A
Schaffer, C. B.
C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305
Scheidegger, P. J.
P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548
Schenkel, T.
D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q
Schirhagl, R.
R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659
Schliesser, A.
W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114
M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236
Schloss, J. M.
J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044
Schmidgall, E. R.
E. R. Schmidgall, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett., vol. 18, pp. 1175–1179, 2018. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b04717
M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001
Schmid-Lorch, D.
T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299
Schmitt, S.
S. Schmitt, “Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor,” Science, vol. 356, no. 6340, pp. 832–837, 2017. [Online]. Available: https://doi.org/10.1126/science.aam5532
Schoelkopf, R. J.
M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, pp. 1169–1174, 2013. [Online]. Available: https://doi.org/10.1126/science.1231930
Schreck, M.
M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462
Schröder, T.
S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118
T. Schröder, “Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15376
T. Schröder, “Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation,” Opt. Mater. Exp., vol. 7, May 2017, Art. no. . [Online]. Available: https://doi.org/10.1364/OME.7.001514
T. Schröder, “Quantum nanophotonics in diamond [Invited],” J. Opt. Soc. Amer. B, vol. 33, no. 4, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B65
L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002
Schupp, J.
V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3
Schwefel, H. G.
N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077
Sedlmeir, F.
N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077
Sedov, V.
V. Sedov, “Growth of polycrystalline and single-crystal $\text {CVD}$ diamonds with bright photoluminescence of $\text {Ge-V}$ color centers using germane $\text {GeH}_{4}$ as the dopant source,” Diamond Related Mater., vol. 90, pp. 47–53, 2018. [Online]. Available: https://doi.org/10.1016/j.diamond.2018.10.001
V. Sedov, “SiV color centers in Si-doped isotopically enriched $^{12}\text {C}$ and $^{13}\text {C}$ CVD diamonds,” Physica Status Solidi (a), vol. 214, 2017, Art. no. . [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/pssa.201700198
Seidelin, S.
O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070
Sekiguchi, Y.
H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888
Sellars, M. J.
N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303
Seo, H.
W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266
Shah, S.
M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902
Shams-Ansari, A.
C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826
P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318
Shandilya, P. K.
P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3
P. K. Shandilya, “Hexagonal boron nitride cavity optomechanics,” Nano Lett., vol. 19, no. 2, pp. 1343–1350, 2019. [Online]. Available: https://doi.org/10.1021/acs.nanolett.8b04956
P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1
Shanley, T. W.
T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229
Shaw, K. A.
K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.
Sherwood, M. H.
M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839
Shields, B. J.
N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007
Shigekawa, H.
M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217
Shikata, S.
H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720
Sievert, P. R.
L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299
Sillanpää, M.
C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401
Sillanpää, M. A.
F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993
Simon, C.
R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825
Simon, J.
H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601
Simpson, D. A.
I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501
Sipahigil, A.
M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6
A. Sipahigil, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science, vol. 354, pp. 847–850, 2016. [Online]. Available: https://doi.org/10.1126/science.aah6875
R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010
A. Sipahigil, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.113602
A. Sipahigil, “Quantum interference of single photons from remote nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.143601
Siqueira, J. P.
J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4
Siria, A.
O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070
Siyushev, P.
P. Siyushev, “Optical and microwave control of germanium-vacancy center spins in diamond,” Phys. Rev. B, vol. 96, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.96.081201
Slim, J. J.
N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330
Smith, J. M.
J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196
S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003
P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556
S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .
Sohn, Y.-I.
Y.-I. Sohn, “Controlling the coherence of a diamond spin qubit through its strain environment,” Nature Commun., vol. 9, no. 1, 2018, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-018-04340-3
Son, N. T.
N. T. Son, “Developing silicon carbide for quantum spintronics,” Appl. Phys. Lett., vol. 116, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0004454
Song, J. D.
Song, Y.
N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.
Sørensen, A. S.
K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501
Soshenko, V. V.
V. V. Soshenko, “Nuclear spin gyroscope based on the nitrogen vacancy center in diamond,” Phys. Rev. Lett., vol. 126, no. 19, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.197702
Souris, F.
B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303
P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165
Soykal, Ö. O.
Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502
Srinivasan, K.
Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603
P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801
M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378
Srinivasan, S.
Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263
Stannigel, K.
K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501
Starosielec, S.
D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458
Stas, P.-J.
P.-J. Stas, “Robust multi-qubit quantum network node with integrated error detection,” 2022, arXiv:2207.13128. [Online]. Available: https://doi.org/10.48550/arXiv.2207.13128
Staudacher, T.
T. Staudacher, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)$^{3}$ sample volume,” Science, vol. 339, no. 6119, pp. 561–563, 2013. [Online]. Available: https://doi.org/10.1126/science.1231675
T. Staudacher, “Enhancing the spin properties of shallow implanted nitrogen vacancy centers in diamond by epitaxial overgrowth,” Appl. Phys. Lett., vol. 101, no. 21, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4767144
Stearn, S.
Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb
Stein, A.
L. E. Ocola and A. Stein, “Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness,” J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct., vol. 24, no. 6, pp. 3061–3065, 2006. [Online]. Available: https://doi.org/10.1116/1.2366698
Stephen, C. J.
C. J. Stephen, “Deep three-dimensional solid-state qubit arrays with long-lived spin coherence,” Phys. Rev. Appl., vol. 12, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.12.064005
Stephenson, L.
L. Stephenson, “High-rate, high-fidelity entanglement of qubits across an elementary quantum network,” Phys. Rev. Lett., vol. 124, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.110501
Stern, O.
W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik, vol. 9, pp. 349–352, 1922. [Online]. Available: http://doi.org/10.1007/BF01326983
Stewart, K. A.
D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060
Stockill, R.
A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066
A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z
R. Stockill, “Phase-tuned entangled state generation between distant spin qubits,” Phys. Rev. Lett., vol. 119, 2017, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.119.010503
Stöhr, R. J.
L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501
Stolk, A.
A. Stolk, “Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers,” PRX Quantum, vol. 3, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.3.020359
Su, C.-H.
I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501
C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240
Sukachev, D.
D. Sukachev, “Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett., vol. 119, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.223602
Sukachev, D. D.
D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w
P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3
R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010
Sumaiya, S.
A. Haque and S. Sumaiya, “An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation,” J. Manuf. Mater. Process., vol. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.3390/jmmp1010006
Sun, S.
S. Sun, “Cavity-enhanced Raman emission from a single color center in a solid,” Phys. Rev. Lett., vol. 121, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.121.083601
Suzuki, T.
M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217
Tahan, C.
Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502
Takaya, R.
S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7
Tamarat, P.
P. Tamarat, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett., vol. 97, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.97.083002
Taminiau, T. H.
O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2
Tamura, S.
S. Tamura, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Exp., vol. 7, no. 11, 2014, Art. no. . [Online]. Available: http://doi.org/10.7567/APEX.7.115201
Tanaka, I.
T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304
Tang, H. X.
L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850
Taniguchi, T.
P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840
Tanji, H.
H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601
Tao, Y.
Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638
Tarucha, S.
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217
Taylor, J. M.
J. M. Taylor, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Phys., vol. 4, pp. 810–816, 2008. [Online]. Available: https://doi.org/10.1038/nphys1075
Tcheborateva, A.
A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031
Tchebotareva, A.
A. Tchebotareva, “Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength,” Phys. Rev. Lett., vol. 123, no. 6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.063601
Tchernij, S. D.
S. D. Tchernij, “Single-photon emitters in lead-implanted single-crystal diamond,” ACS Photon., vol. 5, pp. 4864–4871, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.8b01013
S. D. Tchernij, “Single-photon-emitting optical centers in diamond fabricated upon sn implantation,” ACS Photon., vol. 4, no. 10, pp. 2580–2586, 2017. [Online]. Available: http://doi.org/10.1021/acsphotonics.7b00904
Teale, C.
H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216
Teissier, J.
A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411
J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503
Teraji, T.
S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187
Tetienne, J.-P.
L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503
Teufel, J.
J. Teufel, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature, vol. 475, no. 7356, pp. 359–363, 2011. [Online]. Available: https://doi.org/10.1038/nature10261
Thew, R.
N. Gisin and R. Thew, “Quantum communication,” Nature Photon., vol. 1, pp. 165–171, 2007. [Online]. Available: http://doi.org/10.1038/nphoton.2007.22
Thiel, L.
L. Thiel, “Probing magnetism in 2D materials at the nanoscale with single-spin microscopy,” Science, vol. 364, pp. 973–976, 2019. [Online]. Available: https://www.science.org/doi/10.1126/science.aav6926
Thiering, G.
G. Thiering and A. Gali, “Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond,” Phys. Rev. X, vol. 8, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.8.021063
Thomas, N.
N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.
Thomas, P.
P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5
S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506
Thompson, J. D.
D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081
A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715
Thourhout, D. Van
A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213
Tittel, W.
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145
Tiwari, A. K.
A. K. Tiwari, “Calculated electron affinity and stability of halogen-terminated diamond,” Phys. Rev. B, vol. 84, no. 24, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.84.245305
Togan, E.
E. Togan, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature, vol. 466, no. 7307, pp. 730–734, 2010. [Online]. Available: http://doi.org/10.1038/nature09256
Tohei, T.
T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304
Tomm, N.
N. Tomm, “A bright and fast source of coherent single photons,” Nature Nanotechnol., vol. 16, pp. 399–403, 2021. [Online]. Available: http://doi.org/10.1038/s41565-020-00831-x
Toth, M.
I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186
T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229
Toyli, D. M.
D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q
Treutlein, P.
P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14
Trusheim, M. E.
T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4
L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402
M. E. Trusheim, “Transform-limited photons from a coherent tin-vacancy spin in diamond,” Phys. Rev. Lett., vol. 124, no. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.023602
C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w
M. E. Trusheim, “Lead-related quantum emitters in diamond,” Phys. Rev. B, vol. 99, no. 7, 2019, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.99.075430
M. E. Trusheim and D. Englund, “Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond,” New J. Phys., vol. 18, no. 12, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/aa5040
Trycz, A.
B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A
Tsaturyan, Y.
W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114
Tsukahara, R.
R. Tsukahara, “Removing non-size-dependent electron spin decoherence of nanodiamond quantum sensors by aerobic oxidation,” ACS Appl. Nano Mater., vol. 2, no. 6, pp. 3701–3710, 2019. [Online]. Available: http://doi.org/10.1021/acsanm.9b00614
Turner, M. J.
M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed
J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044
Twamley, J.
B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535
Twitchen, D.
H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604
Twitchen, D. J.
Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801
Ummethala, S.
P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494
Unden, T.
T. Unden, “Quantum metrology enhanced by repetitive quantum error correction,” Phys. Rev. Lett., vol. 116, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.230502
Vahala, K. J.
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524
Valivarthi, R.
R. Valivarthi, “Quantum teleportation across a metropolitan fibre network,” Nature Photon., vol. 10, pp. 676–680, 2016. [Online]. Available: http://doi.org/10.1038/nphoton.2016.180
van der Sar, T.
F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88
Vandersypen, L. M. K.
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217
Vella, S.
Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb
Venkataraman, V.
P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318
B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72
Verhagen, E.
A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066
L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601
Vincent, P.
O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070
Völker, L. A.
E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H
Vuckovic, J.
S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010
D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102
J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229
Vuletic, V.
H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601
W. Bauer, G. E.
A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201
W. Chui, B.
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.
Wahl, U.
U. Wahl, “Direct structural identification and quantification of the split-vacancy configuration for implanted Sn in diamond,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.045301
Waldherr, G.
G. Waldherr, “Quantum error correction in a solid-state hybrid spin register,” Nature, vol. 506, pp. 204–207, 2014. [Online]. Available: http://doi.org/10.1038/nature12919
Wallucks, A.
A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z
Walsworth, R.
L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549
Walsworth, R. L.
M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed
J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044
D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781
Wan, N. H.
M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534
N. H. Wan, “Large-scale integration of artificial atoms in hybrid photonic circuits,” Nature, vol. 583, pp. 226–231, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2441-3
N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349
S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118
Wandel, M. E.
M. E. Wandel, “Attenuation in silica-based optical fibers,” Ph.D. dissertation, DTU, 2006. [Online]. Available: https://orbit.dtu.dk/en/publications/attenuation-in-silica-based-optical-fibers
Wang, C.
C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005
Wang, D.
D. Wang, “Turning a molecule into a coherent two-level quantum system,” Nature Phys., vol. 15, pp. 483–489, May 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0436-5
Wang, H.
H. Wang and I. Lekavicius, “Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0024001
M. C. Kuzyk and H. Wang, “Controlling multimode optomechanical interactions via interference,” Phys. Rev. A, vol. 96, no. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.96.023860
D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060
Wang, P.
P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840
Warburton, R. J.
S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577
D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036
D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458
R. J. Warburton, “Single spins in self-assembled quantum dots,” Nature Mater., vol. 12, no. 6, pp. 483–493, 2013. [Online]. Available: https://doi.org/10.1038/nmat3585
D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721
Watkins, B.
L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299
Waxman, A.
V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801
Weaver, M.
M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049
Weaver, M. J.
M. J. Weaver, “Coherent optomechanical state transfer between disparate mechanical resonators,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-017-00968-9
Webb, J. L.
J. L. Webb, “Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals,” Front. Phys., vol. 8, 2020, Art. no. . [Online]. Available: https://doi.org/10.3389/fphy.2020.522536
Wehner, S.
Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288
Weig, E. M.
S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0
Wein, S.
R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825
Weinfurter, H.
C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005
Weis, C. D.
D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q
Welinski, S.
D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081
Whaites, O. T.
O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214
Whiteley, S. J.
S. J. Whiteley, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nature Phys., vol. 15, no. 5, pp. 490–495, 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0420-0
Wiederhecker, G. S.
N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511
A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601
F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508
Wild, C.
P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710
Wildanger, D.
S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024
Wineland, D.
D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281
Winn, J. N.
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9
Wolf, T.
T. Wolf, “Subpicotesla diamond magnetometry,” Phys. Rev. X, vol. 5, no. 4, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041001
Wolfowicz, G.
G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192
Wong, K. C.
K. C. Wong, “Microscopic study of optically stable coherent color centers in diamond generated by high-temperature annealing,” Phys. Rev. Appl., vol. 18, no. 2, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.18.024044
Woolley, M.
C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401
M. Woolley and A. Clerk, “Two-mode back-action-evading measurements in cavity optomechanics,” Phys. Rev. A, vol. 87, no. 6, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.87.063846
Wrachtrup, J.
D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2
T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299
M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001
F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501
Wu, M.
M. Wu, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nature Nanotechnol., vol. 12, no. 2, pp. 127–131, 2017. [Online]. Available: https://doi.org/10.1038/nnano.2016.226
M. Wu, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.4.021052
M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7
Wu, Y.
Y. Wu, “Strong quantum computational advantage using a superconducting quantum processor,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.180501
Xie, L.
L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501
Xuereb, A.
S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0
L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601
Y. Yuan, H.
H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002
Yacoby, A.
L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501
F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88
Yamada, H.
H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720
Yamamoto, M.
H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888
Yan, P.
H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002
Yan, X.
X. Yan, “Silicon photonic quantum computing with spin qubits,” APL Photon., vol. 6, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0049372
Yeo, I.
I. Yeo, “Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system,” Nature Nanotechnol., vol. 9, no. 2, pp. 106–110, 2014. [Online]. Available: https://doi.org/10.1038/nnano.2013.274
Yin, J.
J. Yin, “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2401-y
Yu, Y.
Y. Yu, “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, no. 7794, pp. 240–245, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-1976-7
Yuan, Z.
Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263
Yurgens, V.
V. Yurgens, “Low-charge-noise nitrogen-vacancy centers in diamond created using laser writing with a solid-immersion lens,” ACS Photon., vol. 8, pp. 1726–1734, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00274
Zaitsev, A.
S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024
A. Zaitsev, Optical Properties of Diamond. Berlin, Heidelberg, Germany: Springer-Verlag, 2001. [Online]. Available: https://doi.org/10.1007/978-3-662-04548-0
Zbinden, H.
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145
Zhai, L.
L. Zhai, “Quantum interference of identical photons from remote GaAs quantum dots,” Nature Nanotechnol., vol. 17, pp. 829–833, 2022. [Online]. Available: https://doi.org/10.1038/s41565-022-01131-2
Zhang, G.
G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075
Zhang, J.
Zhang, J. L.
J. L. Zhang, “Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers,” Nano Lett., vol. 16, no. 1, pp. 212–217, 2016. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b03515
Zhang, M.
M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902
Zhang, Z.
D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101
Zhang, Z. H.
Z. H. Zhang, “Optically detected magnetic resonance in neutral silicon vacancy centers in diamond via bound exciton states,” Phys. Rev. Lett., vol. 125, pp. 1–6, 2020. [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.237402
Zhang, Z. L.
K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.
Zhang, Z.-H.
Z.-H. Zhang, “Neutral silicon vacancy centers in undoped diamond via surface control,” 2022, arXiv:2206.13698. [Online]. Available: http://arxiv.org/abs/2206.13698
Zhao, Z.
Z. Zhao, “Sub-nanotesla sensitivity at the nanoscale with a single spin,” 2022, arXiv:2205.04415. [Online]. Available: https://doi.org/10.48550/arXiv.2205.04415
Zhong, H.-S.
H.-S. Zhong, “Quantum computational advantage using photons,” Science, vol. 370, pp. 1460–1463, 2020. [Online]. Available: https://doi.org/10.1126/science.abe8770
Zhong, M.
M. Zhong, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature, vol. 517, no. 7533, pp. 177–180, 2015. [Online]. Available: http://doi.org/10.1038/nature14025
Zhong, T.
T. Zhong, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science, vol. 357, no. 6358, pp. 1392–1395, 2017. [Online]. Available: https://doi.org/10.1126/science.aan5959
Zhou, B. B.
D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2
Zhou, T. X.
L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501
Zibrov, A. S.
R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010
Zivari, A.
A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066
Zoller, P.
K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501
Zopes, J.
J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0
J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009
Zwickl, B. M.
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715
ACS Appl. Nano Mater. (1)
R. Tsukahara, “Removing non-size-dependent electron spin decoherence of nanodiamond quantum sensors by aerobic oxidation,” ACS Appl. Nano Mater., vol. 2, no. 6, pp. 3701–3710, 2019. [Online]. Available: http://doi.org/10.1021/acsanm.9b00614
ACS Photon. (8)
P. Wang, T. Taniguchi, Y. Miyamoto, M. Hatano, and T. Iwasaki, “Low-temperature spectroscopic investigation of lead-vacancy centers in diamond fabricated by high-pressure and high-temperature treatment,” ACS Photon., vol. 8, pp. 2947–2954, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00840
S. D. Tchernij, “Single-photon-emitting optical centers in diamond fabricated upon sn implantation,” ACS Photon., vol. 4, no. 10, pp. 2580–2586, 2017. [Online]. Available: http://doi.org/10.1021/acsphotonics.7b00904
S. D. Tchernij, “Single-photon emitters in lead-implanted single-crystal diamond,” ACS Photon., vol. 5, pp. 4864–4871, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.8b01013
V. Yurgens, “Low-charge-noise nitrogen-vacancy centers in diamond created using laser writing with a solid-immersion lens,” ACS Photon., vol. 8, pp. 1726–1734, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00274
A. Das, “Demonstration of hybrid high-Q hexagonal boron nitride microresonators,” ACS Photon., vol. 8, no. 10, pp. 3027–3033, 2021.
D. P. Lake, M. Mitchell, Y. Kamaliddin, and P. E. Barclay, “Optomechanically induced transparency and cooling in thermally stable diamond microcavities,” ACS Photon., vol. 5, no. 3, pp. 782–787, 2018. [Online]. Available: https://doi.org/10.1021/acsphotonics.7b01516
A. E. Rugar, “Narrow-linewidth tin-vacancy centers in a diamond waveguide,” ACS Photon., vol. 7, pp. 2356–2361, 2020. [Online]. Available: https://doi.org/10.1021/acsphotonics.0c00833
K. G. Fehler, “Hybrid quantum photonics based on artificial atoms placed inside one hole of a photonic crystal cavity,” ACS Photon., vol. 8, pp. 2635–2641, 2021. [Online]. Available: https://doi.org/10.1021/acsphotonics.1c00530
Adv. Funct. Mater. (1)
V. Petráková, “Luminescence of nanodiamond driven by atomic functionalization: Towards novel detection principles,” Adv. Funct. Mater., vol. 22, no. 4, pp. 812–819, 2012. [Online]. Available: https://doi.org/10.1002/adfm.201101936
Adv. Mater. (1)
L. Xie, T. X. Zhou, R. J. Stöhr, and A. Yacoby, “Crystallographic orientation dependent reactive ion etching in single crystal diamond,” Adv. Mater., vol. 30, no. 11, 2018, Art. no. . [Online]. Available: https://doi.org/10.1002/adma.201705501
Adv. Opt. Mater. (1)
I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater., vol. 2, pp. 911–928, 2014. [Online]. Available: http://doi.org/10.1002/adom.201400189
Adv. Photon. (1)
M. Nguyen, “Photodynamics and quantum efficiency of germanium vacancy color centers in diamond,” Adv. Photon., vol. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1117/1.AP.1.6.066002
Adv. Quantum Technol. (2)
S. M. Eaton, “Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation,” Adv. Quantum Technol., vol. 2, no. 5/6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900006
J. Borregaard, A. S. Sørensen, and P. Lodahl, “Quantum networks with deterministic spin–photon interfaces,” Adv. Quantum Technol., vol. 2, 2019, Art. no. . [Online]. Available: http://doi.org/10.1002/qute.201800091
AIP Adv. (1)
D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv., vol. 2, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3679721
Annu. Rev. Phys. Chem. (1)
R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem., vol. 65, pp. 83–105, 2014. [Online]. Available: https://doi.org/10.1146/annurev-physchem-040513-103659
APL Mater. (1)
R. Nelz, “Toward wafer-scale diamond nano- and quantum technologies,” APL Mater., vol. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5067267
APL Photon. (8)
H. A. Atikian, “Freestanding nanostructures via reactive ion beam angled etching,” APL Photon., vol. 2, no. 5, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4982603
X. Yan, “Silicon photonic quantum computing with spin qubits,” APL Photon., vol. 6, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0049372
S. L. Mouradian and D. Englund, “A tunable waveguide-coupled cavity design for scalable interfaces to solid-state quantum emitters,” APL Photon., vol. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4978204
A. G. Primo, “Accurate modeling and characterization of photothermal forces in optomechanics,” APL Photon., vol. 6, no. 8, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0055201
N. C. Carvalho, R. Benevides, M. Ménard, G. S. Wiederhecker, N. C. Frateschi, and T. M. Alegre, “High-frequency GaAs optomechanical bullseye resonator,” APL Photon., vol. 6, no. 1, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0024511
T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photon., vol. 3, no. 12, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5051316
M. Mitchell, D. P. Lake, and P. E. Barclay, “Realizing Q $>$ 300 000 in diamond microdisks for optomechanics via etch optimization,” APL Photon., vol. 4, no. 1, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5053122
T. Jung, “Spin measurements of NV centers coupled to a photonic crystal cavity,” APL Photon., vol. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5120120
Appl. Phys. Exp. (3)
D. Kikuchi, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Exp., vol. 10, 2017, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.7567/APEX.10.103004
S.-W. Kim, R. Takaya, S. Hirano, and M. Kasu, “Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11_{\overline{2}}0$) misoriented substrate by step-flow mode,” Appl. Phys. Exp., vol. 14, 2021, Art. no. . [Online]. Available: https://doi.org/10.35848/1882-0786/ac28e7
S. Tamura, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation,” Appl. Phys. Exp., vol. 7, no. 11, 2014, Art. no. . [Online]. Available: http://doi.org/10.7567/APEX.7.115201
Appl. Phys. Lett (3)
P. H. Kim, F. F. Sani, M. R. Freeman, and J. P. Davis, “Broadband optomechanical transduction of nanomagnetic spin modes,” Appl. Phys. Lett., vol. 113, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5039640
M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett., vol. 103, no. 13, 2013, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4821917
I. Bayn, “Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks,” Appl. Phys. Lett., vol. 105, no. 21, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4902562
Appl. Phys. Lett. (37)
S. Mouradian, N. H. Wan, T. Schröder, and D. Englund, “Rectangular photonic crystal nanobeam cavities in bulk diamond,” Appl. Phys. Lett., vol. 111, no. 2, 2017, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4992118
P. Rath, “Diamond electro-optomechanical resonators integrated in nanophotonic circuits,” Appl. Phys. Lett., vol. 105, no. 25, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4901105
J. Riedrich-Möller, “Nanoimplantation and purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond,” Appl. Phys. Lett., vol. 106, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4922117
N. H. Wan, S. Mouradian, and D. Englund, “Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond,” Appl. Phys. Lett., vol. 112, no. 14, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5021349
P. Ovartchaiyapong, L. Pascal, B. Myers, P. Lauria, and A. Bleszynski Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett., vol. 101, no. 16, 2012, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4760274
H. Wang and I. Lekavicius, “Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0024001
K. Kuruma, “Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond,” Appl. Phys. Lett., vol. 118, no. 23, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0051675
J. P. Hadden, “Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses,” Appl. Phys. Lett., vol. 97, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3519847
L. Marseglia, “Nanofabricated solid immersion lenses registered to single emitters in diamond,” Appl. Phys. Lett., vol. 98, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573870
L. Luan, P. R. Sievert, B. Watkins, W. Mu, Z. Hong, and J. B. Ketterson, “Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space,” Appl. Phys. Lett., vol. 89, 2006, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2234299
E. Neu, “Photonic nano-structures on (111)-oriented diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4871580
N. T. Son, “Developing silicon carbide for quantum spintronics,” Appl. Phys. Lett., vol. 116, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0004454
Y. Chu and S. Gröblacher, “A perspective on hybrid quantum opto- and electromechanical systems,” Appl. Phys. Lett., vol. 117, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0021088
P. J. Scheidegger, S. Diesch, M. L. Palm, and C. L. Degen, “Scanning nitrogen-vacancy magnetometry down to 350 mk,” Appl. Phys. Lett., vol. 120, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0093548
H. Clevenson, L. M. Pham, C. Teale, K. Johnson, D. Englund, and D. Braje, “Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 112, no. 25, 2018, Art. no. . [Online]. Available: https://doi.org/10.1063/1.5034216
L. Greuter, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4896415
D. Najer, M. Renggli, D. Riedel, S. Starosielec, and R. J. Warburton, “Fabrication of mirror templates in silica with micron-sized radii of curvature,” Appl. Phys. Lett., vol. 110, 2017, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4973458
P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3262948
K.-M. C. Fu, “Coupling of nitrogen-vacancy centers in diamond to a gap waveguide,” Appl. Phys. Lett., vol. 93, no. 23, 2008, Art. no. . [Online]. Available: https://doi.org/10.1063/1.3045950
M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, pp. 0–5, 2014. [Online]. Available: https://doi.org/10.1063/1.4870999
M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3693–3695, 2004. [Online]. Available: https://doi.org/10.1063/1.1811378
H. A. Atikian, “Superconducting nanowire single photon detector on diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4869574
S. A. Meynell, “Engineering quantum-coherent defects: The role of substrate miscut in chemical vapor deposition diamond growth,” Appl. Phys. Lett., vol. 117, no. 19, 2020, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0029715
S. Sangtawesin, T. O. Brundage, Z. J. Atkins, and J. R. Petta, “Highly tunable formation of nitrogen-vacancy centers via ion implantation,” Appl. Phys. Lett., vol. 105, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4892971
B. Naydenov, “Increasing the coherence time of single electron spins in diamond by high temperature annealing,” Appl. Phys. Lett., vol. 97, no. 24, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3527975
K. Ohno, “Engineering shallow spins in diamond with nitrogen delta-doping,” Appl. Phys. Lett., vol. 101, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4748280
J. Meijer, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett., vol. 87, 2005, Art. no. . [Online]. Available: http://doi.org/10.1063/1.2103389
F. Fávaro de Oliveira, “Effect of low-damage inductively coupled plasma on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 107, no. 7, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4929356
K. Fu, C. Santori, P. Barclay, and R. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett., vol. 96, 2010, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3364135
T. Staudacher, “Enhancing the spin properties of shallow implanted nitrogen vacancy centers in diamond by epitaxial overgrowth,” Appl. Phys. Lett., vol. 101, no. 21, 2012, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4767144
J. Lang, “Long optical coherence times of shallow-implanted, negatively charged silicon vacancy centers in diamond,” Appl. Phys. Lett., vol. 116, no. 6, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/1.5143014
T. W. Shanley, A. A. Martin, I. Aharonovich, and M. Toth, “Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond,” Appl. Phys. Lett., vol. 105, no. 6, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4883229
M. Kim, H. J. Mamin, M. H. Sherwood, C. T. Rettner, J. Frommer, and D. Rugar, “Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond,” Appl. Phys. Lett., vol. 105, no. 4, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4891839
S. Cui and E. L. Hu, “Increased negatively charged nitrogen-vacancy centers in fluorinated diamond,” Appl. Phys. Lett., vol. 103, no. 5, 2013, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4817651
C. Osterkamp, “Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF$_{6}$ plasma treatment,” Appl. Phys. Lett., vol. 106, no. 11, 2015, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4915305
D. P. Lake, M. Mitchell, H. Jayakumar, L. F. dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, 2016, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4940242
H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, and S. Shikata, “A 2-in. mosaic wafer made of a single-crystal diamond,” Appl. Phys. Lett., vol. 104, 2014, Art. no. . [Online]. Available: https://doi.org/10.1063/1.4868720
Appl. Phys. Rev. (1)
G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, “Material platforms for defect qubits and single-photon emitters,” Appl. Phys. Rev., vol. 7, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0006075
Carbon (1)
C. Huang, “Anisotropy effects in diamond under nanoindentation,” Carbon, vol. 132, pp. 606–615, 2018. [Online]. Available: https://doi.org/10.1016/j.carbon.2018.02.066
Commun. Phys. (1)
K. Arai, “Millimetre-scale magnetocardiography of living rats with thoracotomy,” Commun. Phys., vol. 5, no. 1, pp. 1–10, 2022. [Online]. Available: https://doi.org/10.1038/s42005-022-00978-0
Diam. Relat. Mater. (1)
J. O. Orwa, “An upper limit on the lateral vacancy diffusion length in diamond,” Diam. Relat. Mater., vol. 24, 2012, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2012.02.009
Diamond Related Mater (1)
N. Manson and J. Harrison, “Photo-ionization of the nitrogen-vacancy center in diamond,” Diamond Related Mater., vol. 14, no. 10, pp. 1705–1710, 2005. [Online]. Available: https://doi.org/10.1016/j.diamond.2005.06.027
Diamond Related Mater. (5)
M. L. Hicks, A. C. Pakpour-Tabrizi, and R. B. Jackman, “Polishing, preparation and patterning of diamond for device applications,” Diamond Related Mater., vol. 97, 2019, Art. no. . [Online]. Available: https://doi.org/10.1016/j.diamond.2019.05.010
V. Sedov, “Growth of polycrystalline and single-crystal $\text {CVD}$ diamonds with bright photoluminescence of $\text {Ge-V}$ color centers using germane $\text {GeH}_{4}$ as the dopant source,” Diamond Related Mater., vol. 90, pp. 47–53, 2018. [Online]. Available: https://doi.org/10.1016/j.diamond.2018.10.001
F. C. Waldermann, “Creating diamond color centers for quantum optical applications,” Diamond Related Mater., vol. 16, pp. 1887–1895, 2007. [Online]. Available: https://doi.org/10.1016/j.diamond.2007.09.009
A. Lang, “The strain-optical constants of diamond: A brief history of measurements,” Diamond Related Mater., vol. 18, no. 1, pp. 1–5, 2009. [Online]. Available: https://doi.org/10.1016/j.diamond.2008.07.020
B. J. Hausmann, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Related Mater., vol. 19, no. 5, pp. 621–629, 2010. [Online]. Available: https://doi.org/10.1016/j.diamond.2010.01.011
Expert Rev. Mol. Diagn. (1)
R. Fenici, D. Brisinda, and A. M. Meloni, “Clinical application of magnetocardiography,” Expert Rev. Mol. Diagn., vol. 5, no. 3, pp. 291–313, 2005. [Online]. Available: https://doi.org/10.1586/14737159.5.3.291
Front. Phys. (1)
J. L. Webb, “Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals,” Front. Phys., vol. 8, 2020, Art. no. . [Online]. Available: https://doi.org/10.3389/fphy.2020.522536
J. Appl. Phys. (6)
K. O. Ho, “Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy ($\text {NV})$ center in diamond,” J. Appl. Phys., vol. 129, no. 24, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0052233
J. O. Orwa, “Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing,” J. Appl. Phys., vol. 109, 2011, Art. no. . [Online]. Available: http://doi.org/10.1063/1.3573768
S. Ishizu, K. Sasaki, D. Misonou, T. Teraji, K. M. Itoh, and E. Abe, “Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks,” J. Appl. Phys., vol. 127, no. 24, 2020, Art. no. . [Online]. Available: http://doi.org/10.1063/5.0012187
A. N. Newell, D. A. Dowdell, and D. H. Santamore, “Surface effects on nitrogen vacancy centers neutralization in diamond,” J. Appl. Phys., vol. 120, no. 18, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4967735
S. Flågan, D. Riedel, A. Javadi, T. Jakubczyk, P. Maletinsky, and R. J. Warburton, “A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume,” J. Appl. Phys., vol. 131, 2022, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0081577
M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, “Quantum networks based on color centers in diamond,” J. Appl. Phys., vol. 130, 2021, Art. no. . [Online]. Available: https://doi.org/10.1063/5.0056534
J. Manuf. Mater. Process. (1)
A. Haque and S. Sumaiya, “An overview on the formation and processing of nitrogen-vacancy photonic centers in diamond by ion implantation,” J. Manuf. Mater. Process., vol. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.3390/jmmp1010006
J. Mater. Chem. C (1)
E. Janitz, K. Herb, L. A. Völker, W. S. Huxter, C. L. Degen, and J. M. Abendroth, “Diamond surface engineering for molecular sensing with nitrogen–vacancy centers,” J. Mater. Chem. C, 2022. [Online]. Available: http://doi.org/10.1039/D2TC01258H
J. Opt. (1)
D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: Spins and mechanics in diamond,” J. Opt., vol. 19, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1088/2040-8986/aa52cd
J. Opt. Soc. Amer. B (2)
T. Schröder, “Quantum nanophotonics in diamond [Invited],” J. Opt. Soc. Amer. B, vol. 33, no. 4, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B65
B. McLaughlin, D. P. Lake, M. Mitchell, and P. E. Barclay, “Nonlinear optics in gallium phosphide cavities: Simultaneous second and third harmonic generation,” J. Opt. Soc. Amer. B, vol. 39, no. 7, 2022, Art. no. . [Online]. Available: https://doi.org/10.1364/JOSAB.455234
J. Opt. Soc. America B (1)
M. Gould, “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. America B, vol. 33, no. 3, pp. B35–B42, 2016. [Online]. Available: https://doi.org/10.1364/JOSAB.33.000B35
J. Phys. B: Atomic, Mol. Opt. Phys. (1)
C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B: Atomic, Mol. Opt. Phys., vol. 39, no. 1, pp. 37–41, 2006. [Online]. Available: http://doi.org/10.1088/0953-4075/39/1/005
J. Phys. D: Appl. Phys. (1)
J. E. Losby, V. T. K. Sauer, and M. R. Freeman, “Recent advances in mechanical torque studies of small-scale magnetism,” J. Phys. D: Appl. Phys., vol. 51, 2018, Art. no. . [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6463/aadccb
J. Phys.: Conf. Ser. (1)
C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys.: Conf. Ser., vol. 264, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1742-6596/264/1/012025
J. Physics: Condens. Matter (1)
H. Pinto and R. Jones, “Theory of the birefringence due to dislocations in single crystal CVD diamond,” J. Physics: Condens. Matter, vol. 21, no. 36, 2009, Art. no. . [Online]. Available: http://dx.doi.org/10.1088/0953-8984/21/36/364220
J. Physics: Photon. (1)
S. Castelletto and A. Boretti, “Silicon carbide color centers for quantum applications,” J. Physics: Photon., vol. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/2515-7647/ab77a2
J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct. (1)
L. E. Ocola and A. Stein, “Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness,” J. Vac. Sci. Technol. B: Microelectronics Nanometer Struct., vol. 24, no. 6, pp. 3061–3065, 2006. [Online]. Available: https://doi.org/10.1116/1.2366698
Laser Photon. Rev (1)
S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev., vol. 3, 2009, Art. no. .
Laser Phys. Lett. (1)
O. Lux, “Multi-octave frequency comb generation by $\chi$ (3)-nonlinear optical processes in CVD diamond at low temperatures,” Laser Phys. Lett., vol. 11, no. 8, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1612-2011/11/8/086101
Mater. Quantum Technol. (1)
A. M. Edmonds, “Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications,” Mater. Quantum Technol., vol. 1, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/0.1088/2633-4356/abd88a
Meas. Sci. Technol. (1)
C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol., vol. 12, pp. 1784–1794, 2001. [Online]. Available: https://doi.org/10.1088/0957-0233/12/11/305
Micromachines (1)
M. Challier, “Advanced fabrication of single-crystal diamond membranes for quantum technologies,” Micromachines, vol. 9, 2018, Art. no. . [Online]. Available: https://doi.org/10.3390/mi9040148
MRS Bull. (1)
W. F. Koehl, H. Seo, G. Galli, and D. D. Awschalom, “Designing defect spins for wafer-scale quantum technologies,” MRS Bull., vol. 40, pp. 1146–1153, 2015. [Online]. Available: http://doi.org/10.1557/mrs.2015.266
Nano Lett. (20)
I. Bayn, “Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks,” Nano Lett., vol. 15, pp. 1751–1758, 2015. [Online]. Available: https://doi.org/10.1021/nl504441m
D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett., vol. 10, pp. 3168–3172, 2010. [Online]. Available: https://doi.org/10.1021/nl102066q
T. Ishikawa, “Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer,” Nano Lett., vol. 12, pp. 2083–2087, 2012. [Online]. Available: https://doi.org/10.1021/nl300350r
B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett., vol. 15, no. 8, pp. 5131–5136, 2015. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b01346
J. L. Zhang, “Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers,” Nano Lett., vol. 16, no. 1, pp. 212–217, 2016. [Online]. Available: http://doi.org/10.1021/acs.nanolett.5b03515
B. J. Hausmann, “Coupling of $\text {NV}$ centers to photonic crystal nanobeams in diamond,” Nano Lett., vol. 13, pp. 5791–5796, 2013. [Online]. Available: https://doi.org/10.1021/nl402174g
D. Englund, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett., vol. 10, pp. 3922–3926, 2010. [Online]. Available: https://doi.org/10.1021/nl101662v
J. Riedrich-Möller, “Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond,” Nano Lett., vol. 14, no. 9, pp. 5281–5287, 2014. [Online]. Available: http://doi.org/10.1021/nl502327b
D. Chen, “Quantum interference of resonance fluorescence from Germanium-vacancy color centers in diamond,” Nano Lett., vol. 22, no. 15, pp. 6306–6312, 2022. [Online]. Available: https://doi.org/10.1021/acs.nanolett.2c01959
S. A. Momenzadeh, “Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers,” Nano Lett., vol. 15, pp. 165–169, 2015. [Online]. Available: https://doi.org/10.1021/nl503326t
A. E. Rugar, “Generation of tin-vacancy centers in diamond via shallow ion implantation and subsequent diamond overgrowth,” Nano Lett., vol. 20, pp. 1614–1619, 2020. [Online]. Available: https://doi.org/10.1021/acs.nanolett.9b04495
M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-p. Chou, and A. Gali, “Proper surface termination for luminescent near-surface NV centers in diamond,” Nano Lett., vol. 14, no. 8, pp. 4772–4777, 2014. [Online]. Available: https://doi.org/10.1021/nl501927y
M. Pfender, “Protecting a diamond quantum memory by charge state control,” Nano Lett., vol. 17, no. 10, pp. 5931–5937, 2017. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b01796
M. V. Hauf, “Addressing single nitrogen-vacancy centers in diamond with transparent in-plane gate structures,” Nano Lett., vol. 14, no. 5, pp. 2359–2364, 2014. [Online]. Available: https://doi.org/10.1021/nl4047619
P. Neumann, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Lett., vol. 13, no. 6, pp. 2738–2742, 2013. [Online]. Available: https://doi.org/10.1021/nl401216y
Y. Chu, “Coherent optical transitions in implanted nitrogen vacancy centers,” Nano Lett., vol. 14, pp. 1982–1986, 2014. [Online]. Available:https://doi.org/10.1021/nl404836p
M. Ruf, “Optically coherent nitrogen-vacancy centers in micrometer-thin etched diamond membranes,” Nano Lett., vol. 19, pp. 3987–3992, 2019. [Online]. Available: http://doi.org/10.1021/acs.nanolett.9b01316
E. R. Schmidgall, “Frequency control of single quantum emitters in integrated photonic circuits,” Nano Lett., vol. 18, pp. 1175–1179, 2018. [Online]. Available: https://doi.org/10.1021/acs.nanolett.7b04717
M. J. Burek, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett., vol. 12, no. 12, pp. 6084–6089, 2012. [Online]. Available: https://doi.org/10.1021/nl302541e
P. K. Shandilya, “Hexagonal boron nitride cavity optomechanics,” Nano Lett., vol. 19, no. 2, pp. 1343–1350, 2019. [Online]. Available: https://doi.org/10.1021/acs.nanolett.8b04956
Nanophotonics (2)
J. M. Smith, S. A. Meynell, A. C. B. Jayich, and J. Meijer, “Colour centre generation in diamond for quantum technologies,” Nanophotonics, vol. 8, pp. 1889–1906, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0196
Á. Gali, “Ab initio theory of the nitrogen-vacancy center in diamond,” Nanophotonics, vol. 8, pp. 1907–1943, 2019. [Online]. Available: https://doi.org/10.1515/nanoph-2019-0154
Nanoscale (1)
B. Regan, A. Trycz, J. E. Fröch, O. C. Schaeper, S. Kim, and I. Aharonovich, “Nanofabrication of high Q, transferable diamond resonators,” Nanoscale, vol. 13, no. 19, pp. 8848–8854, 2021. [Online]. Available: https://doi.org/10.1039/D1NR00749A
Nature (39)
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature, vol. 462, no. 7269, pp. 78–82, 2009. [Online]. Available: https://doi.org/10.1038/nature08524
J. Teufel, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature, vol. 475, no. 7356, pp. 359–363, 2011. [Online]. Available: https://doi.org/10.1038/nature10261
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature, vol. 452, pp. 72–75, 2008. [Online]. Available: http://doi.org/10.1038/nature06715
J. D. Cohen, “Phonon counting and intensity interferometry of a nanomechanical resonator,” Nature, vol. 520, no. 7548, pp. 522–525, 2015. [Online]. Available: https://doi.org/10.1038/nature14349
L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature, vol. 477, pp. 574–578, 2011. [Online]. Available: http://doi.org/10.1038/nature10401
N. H. Wan, “Large-scale integration of artificial atoms in hybrid photonic circuits,” Nature, vol. 583, pp. 226–231, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2441-3
G. Waldherr, “Quantum error correction in a solid-state hybrid spin register,” Nature, vol. 506, pp. 204–207, 2014. [Online]. Available: http://doi.org/10.1038/nature12919
M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, “Superconducting qubit to optical photon transduction,” Nature, vol. 588, pp. 599–603, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-3038-6
T. van Leent, “Entangling single atoms over 33 km telecom fibre,” Nature, vol. 607, no. 7917, pp. 69–73, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04764-4
O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature, vol. 529, pp. 505–508, 2016. [Online]. Available: http://doi.org/10.1038/nature16176
L. Egan, “Fault-tolerant control of an error-corrected qubit,” Nature, vol. 598, pp. 281–286, 2021. [Online]. Available: https://doi.org/10.1038/s41586-021-03928-y
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010. [Online]. Available: http://doi.org/10.1038/nature08812
H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008. [Online]. Available: http://doi.org/10.1038/nature07127
F. Arute, “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, pp. 505–510, 2019. [Online]. Available: http://doi.org/10.1038/s41586-019-1666-5
L. S. Madsen, “Quantum computational advantage with a programmable photonic processor,” Nature, vol. 606, pp. 75–81, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04725-x
J. Yin, “Entanglement-based secure quantum cryptography over 1,120 kilometres,” Nature, vol. 582, no. 7813, pp. 501–505, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2401-y
S. Ritter, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, pp. 195–200, 2012. [Online]. Available: http://doi.org/10.1038/nature11023
S. Krinner, “Realizing repeated quantum error correction in a distance-three surface code,” Nature, vol. 605, no. 7911, pp. 669–674, 2022. [Online]. Available: http://doi.org/10.1038/s41586-022-04566-8
M. Zhong, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature, vol. 517, no. 7533, pp. 177–180, 2015. [Online]. Available: http://doi.org/10.1038/nature14025
J. M. Kindem, A. Ruskuc, J. G. Bartholomew, J. Rochman, Y. Q. Huan, and A. Faraon, “Control and single-shot readout of an ion embedded in a nanophotonic cavity,” Nature, vol. 580, pp. 201–204, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2160-9
M. H. Abobeih, “Fault-tolerant operation of a logical qubit in a diamond quantum processor,” Nature, vol. 606, pp. 884–889, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04819-6
E. Togan, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature, vol. 466, no. 7307, pp. 730–734, 2010. [Online]. Available: http://doi.org/10.1038/nature09256
H. Bernien, “Heralded entanglement between solid-state qubits separated by three metres,” Nature, vol. 497, pp. 86–90, May 2013. [Online]. Available: http://doi.org/10.1038/nature12016
B. Hensen, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature, vol. 526, no. 7575, pp. 682–686, 2015. [Online]. Available: http://doi.org/10.1038/nature15759
P. C. Humphreys, “Deterministic delivery of remote entanglement on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273, 2018. [Online]. Available: http://doi.org/10.1038/s41586-018-0200-5
M. K. Bhaskar, “Experimental demonstration of memory-enhanced quantum communication,” Nature, vol. 580, pp. 60–64, 2020. [Online]. Available: http://doi.org/10.1038/s41586-020-2103-5
S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J. Borregaard, and R. Hanson, “Qubit teleportation between non-neighbouring nodes in a quantum network,” Nature, vol. 605, pp. 663–668, May 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04697-y
D. L. Moehring, “Entanglement of single-atom quantum bits at a distance,” Nature, vol. 449, no. 7158, pp. 68–71, 2007. [Online]. Available: http://doi.org/10.1038/nature06118
D. Bluvstein, “A quantum processor based on coherent transport of entangled atom arrays,” Nature, vol. 604, pp. 451–456, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04592-6
T. M. Graham, “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer,” Nature, vol. 604, pp. 457–462, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04603-6
P. Thomas, L. Ruscio, O. Morin, and G. Rempe, “Efficient generation of entangled multiphoton graph states from a single atom,” Nature, vol. 608, no. 7924, pp. 677–681, 2022. [Online]. Available: https://doi.org/10.1038/s41586-022-04987-5
J. Chan, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature, vol. 478, no. 7367, pp. 89–92, 2011. [Online]. Available: http://www.nature.com/doifinder/10.1038/nature10461
D. Najer, “A gated quantum dot strongly coupled to an optical microcavity,” Nature, vol. 575, no. 7784, pp. 622–627, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1709-y
J. M. Fink, “Climbing the jaynes-cummings ladder and observing its $\sqrt{n}$ nonlinearity in a cavity qed system,” Nature, vol. 454, pp. 315–318, 2008. [Online]. Available: https://doi.org/10.1038/nature07112
Y. Yu, “Entanglement of two quantum memories via fibres over dozens of kilometres,” Nature, vol. 578, no. 7794, pp. 240–245, 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-1976-7
M. H. Abobeih, “Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor,” Nature, vol. 576, no. 7787, pp. 411–415, 2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1834-7
D. R. Glenn, D. B. Bucher, J. Lee, M. D. Lukin, H. Park, and R. L. Walsworth, “High-resolution magnetic resonance spectroscopy using a solid-state spin sensor,” Nature, vol. 555, no. 7696, pp. 351–354, 2018. [Online]. Available: https://doi.org/10.1038/nature25781
D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature, vol. 430, no. 6997, pp. 329–332, 2004.
E. Boto, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature, vol. 555, no. 7698, pp. 657–661, 2018. [Online]. Available: https://doi.org/10.1038/nature26147
Nature Commun. (32)
J. Zopes, K. S. Cujia, K. Sasaki, J. M. Boss, K. M. Itoh, and C. L. Degen, “Three-dimensional localization spectroscopy of individual nuclear spins with sub-angstrom resolution,” Nature Commun., vol. 9, no. 1, pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07121-0
E. R. Eisenach, “Cavity-enhanced microwave readout of a solid-state spin sensor,” Nature Commun., vol. 12, no. 1, pp. 1–7, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-21256-7
M. Munsch, “Resonant driving of a single photon emitter embedded in a mechanical oscillator,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-017-00097-3
S. Maity, “Coherent acoustic control of a single silicon vacancy spin in diamond,” Nature Commun., vol. 11, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-019-13822-x
B. Pigeau, S. Rohr, L. Mercier de Lepinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature Commun., vol. 6, no. 1, pp. 1–7, 2015. [Online]. Available: https://doi.org/10.1038/ncomms9603
M. J. Degen, “Entanglement of dark electron-nuclear spin defects in diamond,” Nature Commun., vol. 12, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-021-23454-9
P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms5429
J. E. Fröch, “Versatile direct-writing of dopants in a solid state host through recoil implantation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-020-18749-2
Y.-I. Sohn, “Controlling the coherence of a diamond spin qubit through its strain environment,” Nature Commun., vol. 9, no. 1, 2018, Art. no. . [Online]. Available: https://doi.org/10.1038/s41467-018-04340-3
T. Schröder, “Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15376
F. Fávaro de Oliveira, “Tailoring spin defects in diamond by lattice charging,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15409
B. Grotz, “Charge state manipulation of qubits in diamond,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1729
P. H. Kim, B. D. Hauer, C. Doolin, F. Souris, and J. P. Davis, “Approaching the standard quantum limit of mechanical torque sensing,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13165
X. Rong, “Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions,” Nature Commun., vol. 6, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms9748
J. Cramer, “Repeated quantum error correction on a continuously encoded qubit by real-time feedback,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms11526
M. H. Abobeih, “One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment,” Nature Commun., vol. 9, 2018, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-018-04916-z
C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, “Quantum nanophotonics with group IV defects in diamond,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-13332-w
B. Pingault, “Coherent control of the silicon-vacancy spin in diamond,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms15579
J. N. Becker, J. Görlitz, C. Arend, M. Markham, and C. Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nature Commun., vol. 7, 2016, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms13512
E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction,” Nature Commun., vol. 8, no. 1, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms14358
L. Rogers, “Multiple intrinsically identical single-photon emitters in the solid state,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms5739
F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. J. Hakonen, T. T. Heikkilä, and M. A. Sillanpää, “Multimode circuit optomechanics near the quantum limit,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms1993
J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nature Commun., vol. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms2201
D. P. Lake, M. Mitchell, B. C. Sanders, and P. E. Barclay, “Two-colour interferometry and switching through optomechanical dark mode excitation,” Nature Commun., vol. 11, 2020, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-020-15625-x
L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Cascaded optical transparency in multimode-cavity optomechanical systems,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6850
M. J. Weaver, “Coherent optomechanical state transfer between disparate mechanical resonators,” Nature Commun., vol. 8, 2017, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-017-00968-9
C. Dory, “Inverse-designed diamond photonics,” Nature Commun., vol. 10, 2019, Art. no. . [Online]. Available: http://doi.org/10.1038/s41467-019-11343-1
L. Li, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nature Commun., vol. 6, May 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms7173
Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms4638
P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. Pernice, “Diamond-integrated optomechanical circuits,” Nature Commun., vol. 4, , 2013, Art. no. . [Online]. Available: https://doi.org/10.1038/ncomms2710
D. P. Lake, M. Mitchell, D. D. Sukachev, and P. E. Barclay, “Processing light with an optically tunable mechanical memory,” Nature Commun., vol. 12, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-20899-w
M. J. Burek, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nature Commun., vol. 5, 2014, Art. no. . [Online]. Available: http://doi.org/10.1038/ncomms6718
Nature Mater. (4)
G. Balasubramanian, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mater., vol. 8, no. 5, pp. 383–387, 2009. [Online]. Available: http://doi.org/10.1038/nmat2420
R. J. Warburton, “Single spins in self-assembled quantum dots,” Nature Mater., vol. 12, no. 6, pp. 483–493, 2013. [Online]. Available: https://doi.org/10.1038/nmat3585
A. Bourassa, “Entanglement and control of single nuclear spins in isotopically engineered silicon carbide,” Nature Mater., vol. 19, no. 12, pp. 1319–1325, 2020. [Online]. Available: https://doi.org/10.1038/s41563-020-00802-6
C. Babin, “Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence,” Nature Mater., vol. 21, no. 1, pp. 67–73, 2022. [Online]. Available: https://doi.org/10.1038/s41563-021-01148-3
Nature Nanotechnol. (12)
L. Zhai, “Quantum interference of identical photons from remote GaAs quantum dots,” Nature Nanotechnol., vol. 17, pp. 829–833, 2022. [Online]. Available: https://doi.org/10.1038/s41565-022-01131-2
M. Fuechsle, “A single-atom transistor,” Nature Nanotechnol., vol. 7, pp. 242–246, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.21
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, “Universal control and error correction in multi-qubit spin registers in diamond,” Nature Nanotechnol., vol. 9, pp. 171–176, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.2
J. Riedrich-Möller, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nature Nanotechnol., vol. 7, pp. 69–74, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2011.190
T. M. Babinec, “A diamond nanowire single-photon source,” Nature Nanotechnol., vol. 5, pp. 195–199, 2010. [Online]. Available: http://doi.org/10.1038/nnano.2010.6
P. Maletinsky, “A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres,” Nature Nanotechnol., vol. 7, pp. 320–324, 2012. [Online]. Available: http://doi.org/10.1038/nnano.2012.50
I. Yeo, “Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system,” Nature Nanotechnol., vol. 9, no. 2, pp. 106–110, 2014. [Online]. Available: https://doi.org/10.1038/nnano.2013.274
M. Wu, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nature Nanotechnol., vol. 12, no. 2, pp. 127–131, 2017. [Online]. Available: https://doi.org/10.1038/nnano.2016.226
D. Rugar, “Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor,” Nature Nanotechnol., vol. 10, pp. 120–124, 2015. [Online]. Available: http://doi.org/10.1038/nnano.2014.288
T. Häberle, D. Schmid-Lorch, F. Reinhard, and J. Wrachtrup, “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnol., vol. 10, no. 2, pp. 125–128, 2015. [Online]. Available: https://doi.org/10.1038/nnano.2014.299
M. S. Grinolds, “Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins,” Nature Nanotechnol., vol. 9, pp. 279–284, 2014. [Online]. Available: http://doi.org/10.1038/nnano.2014.30
N. Tomm, “A bright and fast source of coherent single photons,” Nature Nanotechnol., vol. 16, pp. 399–403, 2021. [Online]. Available: http://doi.org/10.1038/s41565-020-00831-x
Nature Photon. (12)
I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nature Photon., vol. 10, no. 10, pp. 631–641, 2016. [Online]. Available: https://doi.org/10.1038/nphoton.2016.186
Y.-C. Chen, “Laser writing of coherent colour centres in diamond,” Nature Photon., vol. 11, pp. 77–80, 2017. [Online]. Available: http://doi.org/10.1038/nphoton.2016.234
M. Kianinia and I. Aharonovich, “Diamond photonics is scaling up,” Nature Photon., vol. 14, pp. 599–600, 2020. [Online]. Available: https://doi.org/10.1038/s41566-020-0695-9
K. G. Lee, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nature Photon., vol. 5, pp. 166–169, 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2010.312
W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, “Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields,” Nature Photon., vol. 9, pp. 363–373, 2015. [Online]. Available: http://doi.org/10.1038/nphoton.2015.58
A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nature Photon., vol. 5, pp. 301–305, May 2011. [Online]. Available: http://doi.org/10.1038/nphoton.2011.52
B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nature Photon., vol. 8, no. 5, pp. 369–374, 2014. [Online]. Available: https://doi.org/10.1038/nphoton.2014.72
R. Valivarthi, “Quantum teleportation across a metropolitan fibre network,” Nature Photon., vol. 10, pp. 676–680, 2016. [Online]. Available: http://doi.org/10.1038/nphoton.2016.180
N. Gisin and R. Thew, “Quantum communication,” Nature Photon., vol. 1, pp. 165–171, 2007. [Online]. Available: http://doi.org/10.1038/nphoton.2007.22
D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nature Photon., vol. 12, no. 9, pp. 516–527, 2018. [Online]. Available: http://doi.org/10.1038/s41566-018-0232-2
J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nature Photon., vol. 3, pp. 687–695, 2009. [Online]. Available: http://doi.org/10.1038/nphoton.2009.229
T. E. Northup and R. Blatt, “Quantum information transfer using photons,” Nature Photon., vol. 8, pp. 356–363, May 2014. [Online]. Available: http://doi.org/10.1038/nphoton.2014.53
Nature Phys (1)
J. M. Taylor, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Phys., vol. 4, pp. 810–816, 2008. [Online]. Available: https://doi.org/10.1038/nphys1075
Nature Phys. (13)
D. Wang, “Turning a molecule into a coherent two-level quantum system,” Nature Phys., vol. 15, pp. 483–489, May 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0436-5
S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M. Weig, “Optomechanics for quantum technologies,” Nature Phys., vol. 18, pp. 15–24, 2022. [Online]. Available: https://doi.org/10.1038/s41567-021-01402-0
S. J. Whiteley, “Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics,” Nature Phys., vol. 15, no. 5, pp. 490–495, 2019. [Online]. Available: https://doi.org/10.1038/s41567-019-0420-0
O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys., vol. 7, no. 11, pp. 879–883, 2011. [Online]. Available: https://doi.org/10.1038/nphys2070
P. Kómár, “A quantum network of clocks,” Nature Phys., vol. 10, no. 8, pp. 582–587, 2014. [Online]. Available: http://doi.org/10.1038/nphys3000
A. Blais, S. M. Girvin, and W. D. Oliver, “Quantum information processing and quantum optics with circuit quantum electrodynamics,” Nature Phys., vol. 16, no. 3, pp. 247–256, 2020. [Online]. Available: http://doi.org/10.1038/s41567-020-0806-z
P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Phys., vol. 17, pp. 1420–1425, 2021. [Online]. Available: https://doi.org/10.1038/s41567-021-01364-3
F. Dolde, “Room-temperature entanglement between single defect spins in diamond,” Nature Phys., vol. 9, no. 3, pp. 139–143, 2013. [Online]. Available: http://doi.org/10.1038/nphys2545
G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogen–vacancy centres in diamond,” Nature Phys., vol. 7, pp. 789–793, 2011. [Online]. Available: http://doi.org/10.1038/nphys2026
A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving of a single electron spin,” Nature Phys., vol. 11, no. 10, pp. 820–824, 2015. [Online]. Available: https://doi.org/10.1038/nphys3411
N. Hedrich, “Nanoscale mechanics of antiferromagnetic domain walls,” Nature Phys., vol. 17, pp. 574–577, 2021. [Online]. Available: http://doi.org/10.1038/s41567-020-01157-0
A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and S. Gröblacher, “A quantum memory at telecom wavelengths,” Nature Phys., vol. 16, no. 7, pp. 772–777, 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0891-z
M. Forsch, “Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state,” Nature Phys., vol. 16, no. 1, pp. 69–74, 2020. [Online]. Available: https://doi.org/10.1038/s41567-019-0673-7
Nature Rev. Mater. (1)
F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond,” Nature Rev. Mater., vol. 3, no. 1, pp. 1–13, 2018. [Online]. Available: https://doi.org/10.1038/natrevmats.2017.88
New J. Phys. (15)
G. Hajisalem, J. E. Losby, G. de Oliveira Luiz, V. T. Sauer, P. E. Barclay, and M. R. Freeman, “Two-axis cavity optomechanical torque characterization of magnetic microstructures,” New J. Phys., vol. 21, no. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab4386
K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, and R. G. Beausoleil, “Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities,” New J. Phys., vol. 13, no. 5, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/5/055023
M. E. Trusheim and D. Englund, “Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond,” New J. Phys., vol. 18, no. 12, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/aa5040
B. Sarma, T. Busch, and J. Twamley, “Cavity magnomechanical storage and retrieval of quantum states,” New J. Phys., vol. 23, no. 4, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abf535
S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission–overview and critical remarks,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/3/035024
J. Görlitz, “Spectroscopic investigations of negatively charged tin-vacancy centres in diamond,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/ab6631
A. Faraon, “Quantum photonic devices in single-crystal diamond,” New J. Phys., vol. 15, no. 2, 2013, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/15/2/025010
S. Johnson, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys., vol. 17, 2015, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/17/12/122003
M. Pinard and A. Dantan, “Quantum limits of photothermal and radiation pressure cooling of a movable mirror,” New J. Phys., vol. 10, no. 9, 2008, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/10/9/095012
I. Bayn, B. Meyler, J. Salzman, and R. Kalish, “Triangular nanobeam photonic cavities in single-crystal diamond,” New J. Phys., vol. 13, no. 2, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025018
K. D. Jahnke, “Electron–phonon processes of the silicon-vacancy centre in diamond,” New J. Phys., vol. 17, no. 4, 2015, Art. no. . [Online]. Available: http://doi.org/10.1088/1367-2630/17/4/043011
J. R. Maze, “Properties of nitrogen-vacancy centers in diamond: The group theoretic approach,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025025
L. Robledo, H. Bernien, T. V. D. Sar, and R. Hanson, “Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond,” New J. Phys., vol. 13, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/13/2/025013
A. Dietrich, “Isotopically varying spectral features of silicon-vacancy in diamond,” New J. Phys., vol. 16, 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/16/11/113019
Y. Chen, S. Stearn, S. Vella, A. Horsley, and M. W. Doherty, “Optimisation of diamond quantum processors,” New J. Phys., vol. 22, 2020, Art. no. . [Online]. Available: https://doi.org/10.1088/1367-2630/abb0fb
NPJ Quantum Inf (1)
P. Andrich, “Long-range spin wave mediated control of defect qubits in nanodiamonds,” NPJ Quantum Inf., vol. 3, 2017, Art. no. . [Online]. Available: https://www.nature.com/articles/s41534-017-0029-z
NPJ Quantum Inf. (4)
V. Krutyanskiy, M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer, and B. P. Lanyon, “Light-matter entanglement over 50 km of optical fibre,” NPJ Quantum Inf., vol. 5, no. 1, pp. 1–5, 2019. [Online]. Available: https://doi.org/10.1038/s41534-019-0186-3
T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, “A phononic interface between a superconducting quantum processor and quantum networked spin memories,” NPJ Quantum Inf., vol. 7, 2021, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-021-00457-4
Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” NPJ Quantum Inf., vol. 8, no. 1, pp. 1–8, 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00582-8
M. Pompili, “Experimental demonstration of entanglement delivery using a quantum network stack,” NPJ Quantum Inf., vol. 8, 2022, Art. no. . [Online]. Available: https://doi.org/10.1038/s41534-022-00631-2
Opt. Exp. (15)
P. R. Dolan, “Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity,” Opt. Exp., vol. 26, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.26.007056
I. P. Radko, “Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond,” Opt. Exp., vol. 24, 2016, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.24.027715
E. Neu, M. Agio, and C. Becher, “Photophysics of single silicon vacancy centers in diamond: Implications for single photon emission,” Opt. Exp., vol. 20, no. 18, 2012, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.20.019956
F. G. Santos, Y. A. Espinel, G. O. Luiz, R. S. Benevides, G. S. Wiederhecker, and T. P. M. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Exp., vol. 25, no. 2, pp. 508–529, 2017. [Online]. Available: https://doi.org/10.1364/OE.25.000508
P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,” Opt. Exp., vol. 13, pp. 801–820, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.000801
M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Exp., vol. 18, 2010, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.18.023236
R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Exp., vol. 16, no. 23, pp. 18950–18955, 2008. [Online]. Available: https://doi.org/10.1364/OE.16.018950
M. Motojima, T. Suzuki, H. Shigekawa, Y. Kainuma, T. An, and M. Hase, “Giant nonlinear optical effects induced by nitrogen-vacancy centers in diamond crystals,” Opt. Exp., vol. 27, no. 22, pp. 32217–32227, 2019. [Online]. Available: https://doi.org/10.1364/OE.27.032217
C.-H. Lu, “Generation of octave-spanning supercontinuum by Raman-assisted four-wave mixing in single-crystal diamond,” Opt. Exp., vol. 22, no. 4, pp. 4075–4082, 2014. [Online]. Available: https://doi.org/10.1364/OE.22.004075
C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Exp., vol. 16, 2008, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.16.006240
L. Marseglia, “Bright nanowire single photon source based on SiV centers in diamond,” Opt. Exp., vol. 26, no. 1, pp. 80–89, 2018. [Online]. Available: https://doi.org/10.1364/OE.26.000080
D. Huang, A. Abulnaga, S. Welinski, M. Raha, J. D. Thompson, and N. P. de Leon, “Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond,” Opt. Exp., vol. 29, 2021, Art. no. . [Online]. Available: https://doi.org/10.1364/OE.418081
C. Chia, B. Machielse, A. Shams-Ansari, and M. Lončar, “Development of hard masks for reactive ion beam angled etching of diamond,” Opt. Exp., vol. 30, no. 9, pp. 14189–14201, 2022. [Online]. Available: https://doi.org/10.1364/OE.452826
M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment,” Opt. Exp., vol. 13, no. 5, pp. 1515–1530, 2005. [Online]. Available: https://doi.org/10.1364/OPEX.13.001515
N. Thomas, R. J. Barbour, Y. Song, M. L. Lee, and K.-M. C. Fu, “Waveguide-integrated single-crystalline gap resonators on diamond,” Opt. Exp., vol. 22, no. 11, pp. 13555–13564, 2014.
Opt. Lett (3)
P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett., vol. 35, no. 21, pp. 3556–3558, 2010. [Online]. Available: http://doi.org/10.1364/OL.35.003556
X.-W. Chen, S. Götzinger, and V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett., vol. 36, no. 18, pp. 3545–3547, 2011. [Online]. Available: http://doi.org/10.1364/OL.36.003545
M. Povinelli, “Evanescent-wave bonding between optical waveguides,” Opt. Lett., vol. 30, no. 22, 2005, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.30.003042
Opt. Lett. (7)
P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: http://doi.org/10.1364/OL.43.000318
J. P. Hadden, “Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing,” Opt. Lett., vol. 43, 2018, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.43.003586
Y. Rong, “Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation,” Opt. Lett., vol. 44, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OL.44.003793
Opt. Mater. Exp. (1)
T. Schröder, “Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation,” Opt. Mater. Exp., vol. 7, May 2017, Art. no. . [Online]. Available: https://doi.org/10.1364/OME.7.001514
Optica (12)
Y.-C. Chen, “Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield,” Optica, vol. 6, May 2019, Art. no. . [Online]. Available: http://doi.org/10.1364/OPTICA.6.000662
A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: Integrated photonics meets integrated phononics: Publisher's note,” Optica, vol. 6, no. 4, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000213
E. Janitz, M. K. Bhaskar, and L. Childress, “Cavity quantum electrodynamics with color centers in diamond,” Optica, vol. 7, no. 10, 2020, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.398628
M. Mitchell, D. P. Lake, and P. E. Barclay, “Optomechanically amplified wavelength conversion in diamond microcavities,” Optica, vol. 6, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1364/OPTICA.6.000832
Photon. Nanostructures-Fundam. Appl. (1)
L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostructures-Fundam. Appl., vol. 15, pp. 130–136, 2015. [Online]. Available: https://doi.org/10.1016/j.photonics.2015.03.002
Phys. Rep. (2)
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep., vol. 528, pp. 1–45, 2013. [Online]. Available: http://doi.org/10.1016/j.physrep.2013.02.001
H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, “Quantum magnonics: When magnon spintronics meets quantum information science,” Phys. Rep., vol. 965, pp. 1–74, 2022. [Online]. Available: https://doi.org/10.1016/j.physrep.2022.03.002
Phys. Rev. (1)
E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev., vol. 69, 1946, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRev.69.674.2
Phys. Rev. A (7)
M. Woolley and A. Clerk, “Two-mode back-action-evading measurements in cavity optomechanics,” Phys. Rev. A, vol. 87, no. 6, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.87.063846
M. C. Kuzyk and H. Wang, “Controlling multimode optomechanical interactions via interference,” Phys. Rev. A, vol. 96, no. 2, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.96.023860
Y. Chu, M. Markham, D. J. Twitchen, and M. D. Lukin, “All-optical control of a single electron spin in diamond,” Phys. Rev. A, vol. 91, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.91.021801
S. D. Barrett and P. Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A, vol. 71, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.71.060310
R. Ghobadi, S. Wein, H. Kaviani, P. Barclay, and C. Simon, “Progress toward cryogen-free spin-photon interfaces based on nitrogen-vacancy centers and optomechanics,” Phys. Rev. A, vol. 99, no. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.99.053825
E. Janitz, M. Ruf, M. Dimock, A. Bourassa, J. Sankey, and L. Childress, “Fabry-Perot microcavity for diamond-based photonics,” Phys. Rev. A, vol. 92, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevA.92.043844
N. Kalb, P. C. Humphreys, J. J. Slim, and R. Hanson, “Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks,” Phys. Rev. A, vol. 97, no. 6, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.062330
Phys. Rev. Appl. (17)
C. J. Stephen, “Deep three-dimensional solid-state qubit arrays with long-lived spin coherence,” Phys. Rev. Appl., vol. 12, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.12.064005
R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and M. D. Lukin, “Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation,” Phys. Rev. Appl., vol. 5, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.044010
D. Riedel, S. Flågan, P. Maletinsky, and R. J. Warburton, “Cavity-enhanced Raman scattering for in situ alignment and characterization of solid-state microcavities,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.014036
K. C. Wong, “Microscopic study of optically stable coherent color centers in diamond generated by high-temperature annealing,” Phys. Rev. Appl., vol. 18, no. 2, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.18.024044
J. M. Schloss, J. F. Barry, M. J. Turner, and R. L. Walsworth, “Simultaneous broadband vector magnetometry using solid-state spins,” Phys. Rev. Appl., vol. 10, no. 3, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.10.034044
G. Chatzidrosos, “Miniature cavity-enhanced diamond magnetometer,” Phys. Rev. Appl., vol. 8, no. 4, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.044019
S. Meesala, “Enhanced strain coupling of nitrogen-vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl., vol. 5, no. 3, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.5.034010
M. J. Burek, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl., vol. 8, pp. 1–10, 2017. [Online]. Available: https://doi.org/10.1103/PhysRevApplied.8.024026
N. Hedrich, D. Rohner, M. Batzer, P. Maletinsky, and B. J. Shields, “Parabolic diamond scanning probes for single-spin magnetic field imaging,” Phys. Rev. Appl., vol. 14, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.14.064007
M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K.-M. C. Fu, “Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated gap-on-diamond platform,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.011001
H. Kaupp, “Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity,” Phys. Rev. Appl., vol. 6, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.6.054010
J. Benedikter, “Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond,” Phys. Rev. Appl., vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.7.024031
R. Høy Jensen, “Cavity-enhanced photon emission from a single germanium-vacancy center in a diamond membrane,” Phys. Rev. Appl., vol. 13, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.13.064016
M. Ruf, M. Weaver, S. van Dam, and R. Hanson, “Resonant excitation and purcell enhancement of coherent nitrogen-vacancy centers coupled to a fabry-perot microcavity,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.15.024049
D. Riedel, “Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond,” Phys. Rev. Appl., vol. 2, 2014, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.2.064011
S. Aghaeimeibodi, D. Riedel, A. E. Rugar, C. Dory, and J. Vučković, “Electrical tuning of tin-vacancy centers in diamond,” Phys. Rev. Appl., vol. 15, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevApplied.15.064010
A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl., vol. 9, no. 6, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevApplied.9.064031
Phys. Rev. B (20)
N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B, vol. 74, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.74.104303
S. Meesala, “Strain engineering of the silicon-vacancy center in diamond,” Phys. Rev. B, vol. 97, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.97.205444
A. Gali and J. R. Maze, “Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties,” Phys. Rev. B, vol. 88, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.88.235205
T. Tohei, A. Kuwabara, F. Oba, and I. Tanaka, “Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations,” Phys. Rev. B, vol. 73, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.73.064304
S. Chakravarthi, C. Pederson, Z. Kazi, A. Ivanov, and K.-M. C. Fu, “Impact of surface and laser-induced noise on the spectral stability of implanted nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 104, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.104.085425
P. Siyushev, “Optical and microwave control of germanium-vacancy center spins in diamond,” Phys. Rev. B, vol. 96, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.96.081201
S. B. van Dam, “Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.161203
S. Häußler, “Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity,” Phys. Rev. B, vol. 99, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.165310
C. T. Nguyen, “An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond,” Phys. Rev. B, vol. 100, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.100.165428
A. Barfuss, M. Kasperczyk, J. Kölbl, and P. Maletinsky, “Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems,” Phys. Rev. B, vol. 99, May 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.99.174102
V. P. Adiga, “Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators,” Phys. Rev. B, vol. 79, no. 24, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.79.245403
B. D. Hauer, P. H. Kim, C. Doolin, F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional optomechanical resonator,” Phys. Rev. B, vol. 98, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.98.214303
A. Dréau, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Phys. Rev. B, vol. 84, no. 19, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.84.195204
M. Kasperczyk, “Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures,” Phys. Rev. B, vol. 102, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.102.075312
M. E. Trusheim, “Lead-related quantum emitters in diamond,” Phys. Rev. B, vol. 99, no. 7, 2019, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.99.075430
B. Ofori-Okai, “Spin properties of very shallow nitrogen vacancy defects in diamond,” Phys. Rev. B, vol. 86, no. 8, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.86.081406
M. V. Hauf, “Chemical control of the charge state of nitrogen-vacancy centers in diamond,” Phys. Rev. B, vol. 83, no. 8, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.83.081304
F. Maier, J. Ristein, and L. Ley, “Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces,” Phys. Rev. B, vol. 64, no. 16, 2001, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.64.165411
A. K. Tiwari, “Calculated electron affinity and stability of halogen-terminated diamond,” Phys. Rev. B, vol. 84, no. 24, 2011, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevB.84.245305
L. Rondin, “Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds,” Phys. Rev. B, vol. 82, no. 11, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevB.82.115449
Phys. Rev. Lett (8)
V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett., vol. 104, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.104.070801
A. A. Kovalev, G. E. W. Bauer, and A. Brataas, “Nanomechanical magnetization reversal,” Phys. Rev. Lett., vol. 94, 2005, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.94.167201
Ö. O. Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon,” Phys. Rev. Lett., vol. 107, no. 23, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.107.235502
J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.020503
L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, “Floquet phonon lasing in multimode optomechanical systems,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.073601
M. Zhang, S. Shah, J. Cardenas, and M. Lipson, “Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light,” Phys. Rev. Lett., vol. 115, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.115.163902
Y. Liu, M. Davançço, V. Aksyuk, and K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett., vol. 110, 2013, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.110.223603
A. Sipahigil, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.113602
Phys. Rev. Lett. (49)
A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras, “Theory of spin-conserving excitation of the $\text {N}-\mathit{V}-$ ceter in diamond,” Phys. Rev. Lett., vol. 103, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.186404
J. Kölbl, “Initialization of single spin dressed states using shortcuts to adiabaticity,” Phys. Rev. Lett., vol. 122, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.090502
F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.130501
J. N. Becker, “All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.053603
H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, pp. 1–5, 2012. [Online]. Available: http://doi.org/10.1103/PhysRevLett.108.043604
A. Sipahigil, “Quantum interference of single photons from remote nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.143601
C. Hepp, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett., vol. 112, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.036405
L. D. Santis, M. E. Trusheim, K. C. Chen, and D. R. Englund, “Investigation of the stark effect on a centrosymmetric quantum emitter in diamond,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.147402
D. Sukachev, “Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett., vol. 119, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.223602
K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett., vol. 105, 2010, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.105.220501
U. Wahl, “Direct structural identification and quantification of the split-vacancy configuration for implanted Sn in diamond,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.045301
E. N. Knall, “Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System,” Phys. Rev. Lett., vol. 129, no. 5, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.129.053603
R. Stockill, “Phase-tuned entangled state generation between distant spin qubits,” Phys. Rev. Lett., vol. 119, 2017, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.119.010503
A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, “Atomic source of single photons in the telecom band,” Phys. Rev. Lett., vol. 120, no. 24, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.243601
A. K. Ekert, “Quantum cryptography based on bell's theorem,” Phys. Rev. Lett., vol. 67, pp. 661–663, 1991. [Online]. Available: https://doi.org/10.1103/PhysRevLett.67.661
S. Langenfeld, P. Thomas, O. Morin, and G. Rempe, “Quantum repeater node demonstrating unconditionally secure key distribution,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.230506
S. Langenfeld, “Quantum teleportation between remote qubit memories with only a single photon as a resource,” Phys. Rev. Lett., vol. 126, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.130502
L. Stephenson, “High-rate, high-fidelity entanglement of qubits across an elementary quantum network,” Phys. Rev. Lett., vol. 124, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.110501
Y. Wu, “Strong quantum computational advantage using a superconducting quantum processor,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.180501
S. L. Vittorio Giovannetti and L. Maccone, “Quantum metrology,” Phys. Rev. Lett., vol. 96, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.96.010401
S.-K. Liao, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett., vol. 120, 2018, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.120.030501
D. Chen, “Optical gating of resonance fluorescence from a single germanium vacancy color center in diamond,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org10.1103/PhysRevLett.123.033602
S. Sun, “Cavity-enhanced Raman emission from a single color center in a solid,” Phys. Rev. Lett., vol. 121, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.121.083601
P. Tamarat, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett., vol. 97, 2006, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.97.083002
M. Bhaskar, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett., vol. 118, no. 22, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.118.223603
L. J. Rogers, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett., vol. 113, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.263602
A. G. Primo, N. C. Carvalho, C. M. Kersul, N. C. Foretaste, G. S. Wiederhecker, and T. P. M. Alegre, “Quasinormal-mode perturbation theory for dissipative and dispersive optomechanics,” Phys. Rev. Lett., vol. 125, no. 23, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.233601
C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, “Quantum backaction evading measurement of collective mechanical modes,” Phys. Rev. Lett., vol. 117, no. 14, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.117.140401
A. Pontin, “Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system,” Phys. Rev. Lett., vol. 116, no. 10, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.103601
A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett., vol. 109, no. 3, 2012, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevLett.109.033604
E. R. Macquarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 111, no. 22, 2013, Art. no. [Online]. Available: 10.1103/PhysRevLett.111.227602
A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble, “Observation of the vacuum Rabi spectrum for one trapped atom,” Phys. Rev. Lett., vol. 93, 2004, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.93.233603
A. Tchebotareva, “Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength,” Phys. Rev. Lett., vol. 123, no. 6, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.063601
H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, “Heralded single-magnon quantum memory for photon polarization states,” Phys. Rev. Lett., vol. 103, no. 4, 2009, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.103.043601
P. Magnard, “Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems,” Phys. Rev. Lett., vol. 125, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.260502
C. T. Nguyen, “Quantum network nodes based on diamond qubits with an efficient nanophotonic interface,” Phys. Rev. Lett., vol. 123, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.123.183602
A. Pscherer, “Single-molecule vacuum Rabi splitting: Four-wave mixing and optical switching at the single-photon level,” Phys. Rev. Lett., vol. 127, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.127.133603
M.-A. Lemonde, “Phonon networks with silicon-vacancy centers in diamond waveguides,” Phys. Rev. Lett., vol. 120, no. 21, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.120.213603
T. H. Taminiau, J. J. T. Wagenaar, T. Van der Sar, F. Jelezko, V. V. Dobrovitski, and R. Hanson, “Detection and control of individual nuclear spins using a weakly coupled electron spin,” Phys. Rev. Lett., vol. 109, no. 13, 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.109.137602
V. V. Soshenko, “Nuclear spin gyroscope based on the nitrogen vacancy center in diamond,” Phys. Rev. Lett., vol. 126, no. 19, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.126.197702
F. Dolde, “Nanoscale detection of a single fundamental charge in ambient conditions using the $\text{NV}^-$ center in diamond,” Phys. Rev. Lett., vol. 112, no. 9, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.112.097603
M. E. Trusheim, “Transform-limited photons from a coherent tin-vacancy spin in diamond,” Phys. Rev. Lett., vol. 124, no. 2, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.124.023602
V. M. Acosta, “Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond,” Phys. Rev. Lett., vol. 108, May 2012, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.108.206401
Z. H. Zhang, “Optically detected magnetic resonance in neutral silicon vacancy centers in diamond via bound exciton states,” Phys. Rev. Lett., vol. 125, pp. 1–6, 2020. [Online]. Available: https://doi.org/10.1103/PhysRevLett.125.237402
D. Levonian, “Optical entanglement of distinguishable quantum emitters,” Phys. Rev. Lett., vol. 128, May 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.128.213602
D. Bluvstein, Z. Zhang, and A. C. B. Jayich, “Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers,” Phys. Rev. Lett., vol. 122, no. 7, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.122.076101
B. A. Myers, A. Das, M. Dartiailh, K. Ohno, D. D. Awschalom, and A. B. Jayich, “Probing surface noise with depth-calibrated spins in diamond,” Phys. Rev. Lett., vol. 113, no. 2, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.113.027602
T. Iwasaki, “Tin-vacancy quantum emitters in diamond,” Phys. Rev. Lett., vol. 119, no. 25, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.119.253601
T. Unden, “Quantum metrology enhanced by repetitive quantum error correction,” Phys. Rev. Lett., vol. 116, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevLett.116.230502
Phys. Rev. Res. (2)
Z. Yuan, M. Fitzpatrick, L. V. H. Rodgers, S. Sangtawesin, S. Srinivasan, and N. P. de Leon, “Charge state dynamics and optically detected electron spin resonance contrast of shallow nitrogen-vacancy centers in diamond,” Phys. Rev. Res., vol. 2, no. 3, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.2.033263
O. T. Whaites, J. Randall, T. H. Taminiau, and T. S. Monteiro, “Adiabatic dynamical-decoupling-based control of nuclear spin registers,” Phys. Rev. Res., vol. 4, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevResearch.4.013214
Phys. Rev. X (14)
A. Reiserer, “Robust quantum-network memory using decoherence-protected subspaces of nuclear spins,” Phys. Rev. X, vol. 6, no. 2, 2016, Art. no. . [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevX.6.021040
G. Thiering and A. Gali, “Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond,” Phys. Rev. X, vol. 8, 2018, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.8.021063
R. Debroux, “Quantum control of the tin-vacancy spin qubit in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.11.041041
S. Sangtawesin, “Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031052
S. L. Mouradian, “Scalable integration of long-lived quantum memories into a photonic circuit,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.031009
T. Wolf, “Subpicotesla diamond magnetometry,” Phys. Rev. X, vol. 5, no. 4, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041001
M. Wu, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X, vol. 4, 2014, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.4.021052
B. Machielse, “Quantum interference of electromechanically stabilized emitters in nanophotonic devices,” Phys. Rev. X, vol. 9, no. 3, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031022
D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” Phys. Rev. X, vol. 6, no. 4, 2016, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.6.041060
B. Khanaliloo, H. Jayakumar, A. C. Hryciw, D. P. Lake, H. Kaviani, and P. E. Barclay, “Single-crystal diamond nanobeam waveguide optomechanics,” Phys. Rev. X, vol. 5, 2015, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.5.041051
P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, and R. G. Beausoleil, “Hybrid nanocavity resonant enhancement of color center emission in diamond,” Phys. Rev. X, vol. 1, 2011, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.1.011007
A. E. Rugar, “Quantum photonic interface for tin-vacancy centers in diamond,” Phys. Rev. X, vol. 11, 2021, Art. no. . [Online]. Available: http://doi.org/10.1103/PhysRevX.11.031021
C. E. Bradley, “A ten-qubit solid-state spin register with quantum memory up to one minute,” Phys. Rev. X, vol. 9, 2019, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.9.031045
D. Riedel, “Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond,” Phys. Rev. X, vol. 7, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/PhysRevX.7.031040
Phys. Today (1)
L. Childress, R. Walsworth, and M. Lukin, “Atom-like crystal defects: From quantum computers to biological sensors,” Phys. Today, vol. 67, pp. 38–43, 2014. [Online]. Available: http://doi.org/10.1063/PT.3.2549
Physica Status Solidi (1)
A. Bolshakov, “Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane,” Physica Status Solidi (a), vol. 212, pp. 2525–2532, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532174
Physica Status Solidi (a) (1)
V. Sedov, “SiV color centers in Si-doped isotopically enriched $^{12}\text {C}$ and $^{13}\text {C}$ CVD diamonds,” Physica Status Solidi (a), vol. 214, 2017, Art. no. . [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/pssa.201700198
Physica Status Solidi Rapid Res. Lett (1)
J.-C. Arnault, S. Saada, and V. Ralchenko, “Chemical vapor deposition single-crysal diamond: A review,” Physica Status Solidi Rapid Res. Lett., vol. 16, 2022, Art. no. . [Online]. Available: https://doi.org/10.1002/pssr.202100354
Physica Status Solidi(a) (1)
P. Rath, S. Ummethala, C. Nebel, and W. H. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Physica Status Solidi(a), vol. 212, no. 11, pp. 2385–2399, 2015. [Online]. Available: https://doi.org/10.1002/pssa.201532494
Proc. Nat. Acad. Sci. (3)
C. Degen, M. Poggio, H. Mamin, C. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Nat. Acad. Sci., vol. 106, no. 5, pp. 1313–1317, 2009. [Online]. Available: https://doi.org/10.1073/pnas.0812068106
J. F. Barry, “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” Proc. Nat. Acad. Sci., vol. 113, no. 49, pp. 14133–14138, 2016. [Online]. Available: https://doi.org/10.1073/pnas.1601513113
W. H. P. Nielsen, Y. Tsaturyan, C. B. Møller, E. S. Polzik, and A. Schliesser, “Multimode optomechanical system in the quantum regime,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 62–66, 2017. [Online]. Available: https://doi.org/10.1073/pnas.1608412114
Prog. Quantum Electron. (1)
S. Johnson, P. R. Dolan, and J. M. Smith, “Diamond photonics for distributed quantum networks,” Prog. Quantum Electron., vol. 55, pp. 129–165, 2017. [Online]. Available: https://doi.org/10.1016/j.pquantelec.2017.05.003
PRX Quantum (3)
D. M. Lukin, M. A. Guidry, and J. Vučković, “Integrated quantum photonics with silicon carbide: Challenges and prospects,” PRX Quantum, vol. 1, 2020, Art. no. . [Online]. Available: http://doi.org/10.1103/PRXQuantum.1.020102
M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatte, “Opportunities for long-range magnon-mediated entanglement of spin qubits via on- and off-resonant coupling,” PRX Quantum, vol. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.2.040314
A. Stolk, “Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers,” PRX Quantum, vol. 3, 2022, Art. no. . [Online]. Available: https://doi.org/10.1103/PRXQuantum.3.020359
Quantum Sci. Technol. (3)
M. C. Marshall, M. J. Turner, M. J. Ku, D. F. Phillips, and R. L. Walsworth, “Directional detection of dark matter with diamond,” Quantum Sci. Technol., vol. 6, no. 2, 2021, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/abe5ed
N. Lauk, “Perspectives on quantum transduction,” Quantum Sci. Technol., vol. 5, no. 2, 2020, Art. no. . [Online]. Available: http://doi.org/10.1088/2058-9565/ab788a
J. V. Cady, “Diamond optomechanical crystals with embedded nitrogen-vacancy centers,” Quantum Sci. Technol., vol. 4, no. 2, 2019, Art. no. . [Online]. Available: https://doi.org/10.1088/2058-9565/ab043e
Rep. Prog. Phys. (3)
I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys., vol. 74, 2011, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/74/7/076501
L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys., vol. 77, May 2014, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/77/5/056503
P. Glover and P. Mansfield, “Limits to magnetic resonance microscopy,” Rep. Prog. Phys., vol. 65, no. 10, 2002, Art. no. . [Online]. Available: https://doi.org/10.1088/0034-4885/65/10/203
Rev. Mod. Phys (1)
J. F. Barry, “Sensitivity optimization for NV-diamond magnetometry,” Rev. Mod. Phys., vol. 92, 2020, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.92.015004
Rev. Modern Phys (1)
D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Modern Phys., vol. 75, no. 1, pp. 281–324, 2003. [Online]. Available: https://doi.org/10.1103/RevModPhys.75.281
Rev. Modern Phys. (6)
L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with trapped ions,” Rev. Modern Phys., vol. 82, pp. 1209–1224, 2010. [Online]. Available: https://doi.org/10.1103/RevModPhys.82.1209
A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Modern Phys., vol. 87, pp. 1379–1418, 2015. [Online]. Available: https://doi.org/10.1103/RevModPhys.87.1379
C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Modern Phys., vol. 89, no. 3, 2017, Art. no. . [Online]. Available: https://doi.org/10.1103/RevModPhys.89.035002
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Modern Phys., vol. 74, no. 1, pp. 145–195, 2002. [Online]. Available: https://doi.org/10.1103/RevModPhys.74.145
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79, pp. 1217–1265, 2007. [Online]. Available: https://doi.org/10.1103/RevModPhys.79.1217
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Modern Phys., vol. 86, no. 4, pp. 1391–1452, 2014. [Online]. Available: http://doi.org/10.1103/RevModPhys.86.1391
Rev. Sci. Instrum. (2)
M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Rev. Sci. Instrum., vol. 85, 2014, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4902818
P. Appel, “Fabrication of all diamond scanning probes for nanoscale magnetometry,” Rev. Sci. Instrum., vol. 87, 2016, Art. no. . [Online]. Available: http://doi.org/10.1063/1.4952953
Sci. Adv (1)
I. Bertelli, “Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator,” Sci. Adv., vol. 6, 2020, Art. no. . [Online]. Available: https://www.science.org/doi/10.1126/sciadv.abd3556
Sci. Adv. (3)
P. Kharel, “High-frequency cavity optomechanics using bulk acoustic phonons,” Sci. Adv., vol. 5, 2019, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aav0582
G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, “Vanadium spin qubits as telecom quantum emitters in silicon carbide,” Sci. Adv., vol. 6, no. 18, pp. 2–10, 2020. [Online]. Available: https://doi.org/10.1126/sciadv.aaz1192
L. Fan, “Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits,” Sci. Adv., vol. 4, 2018, Art. no. . [Online]. Available: https://doi.org/10.1126/sciadv.aar4994
Sci. Rep. (3)
J. M. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonça, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-14748-4
T. Iwasaki, “Germanium-vacancy single color centers in diamond,” Sci. Rep., vol. 5, no. 1, 2015, Art. no. . [Online]. Available: http://doi.org/10.1038/srep12882
M. Schreck, S. Gsell, R. Brescia, and M. Fischer, “Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers,” Sci. Rep., vol. 7, 2017, Art. no. . [Online]. Available: http://dx.doi.org/10.1038/srep44462
Science (27)
L. Thiel, “Probing magnetism in 2D materials at the nanoscale with single-spin microscopy,” Science, vol. 364, pp. 973–976, 2019. [Online]. Available: https://www.science.org/doi/10.1126/science.aav6926
G. S. MacCabe, “Nano-acoustic resonator with ultralong phonon lifetime,” Science, vol. 370, no. 6518, pp. 840–843, 2020. [Online]. Available: https://doi.org/10.1126/science.abc7312
D. Cohen, “Magnetoencephalography: Detection of the brain's electrical activity with a superconducting magnetometer,” Science, vol. 175, no. 4022, pp. 664–666, 1972. [Online]. Available: https://doi.org/10.1126/science.175.4022.664
N. Aslam, “Nanoscale nuclear magnetic resonance with chemical resolution,” Science, vol. 357, no. 6346, pp. 67–71, 2017. [Online]. Available: https://doi.org/10.1126/science.aam8697
S. Schmitt, “Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor,” Science, vol. 356, no. 6340, pp. 832–837, 2017. [Online]. Available: https://doi.org/10.1126/science.aam5532
J. M. Boss, K. Cujia, J. Zopes, and C. L. Degen, “Quantum sensing with arbitrary frequency resolution,” Science, vol. 356, no. 6340, pp. 837–840, 2017. [Online]. Available: https://doi.org/10.1126/science.aam7009
H. J. Mamin, “Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor,” Science, vol. 339, no. 6119, pp. 557–560, 2013. [Online]. Available: https://doi.org/10.1126/science.1231540
T. Staudacher, “Nuclear magnetic resonance spectroscopy on a (5-nanometer)$^{3}$ sample volume,” Science, vol. 339, no. 6119, pp. 561–563, 2013. [Online]. Available: https://doi.org/10.1126/science.1231675
A. Bienfait, “Phonon-mediated quantum state transfer and remote qubit entanglement,” Science, vol. 364, no. 6438, pp. 368–371, 2019. [Online]. Available: https://doi.org/10.1126/science.aaw8415
L. Childress, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science, vol. 314, pp. 281–285, 2006. [Online]. Available: https://doi.org/10.1126/science.1131871
P. C. Maurer, “Room-temperature quantum bit memory exceeding one second,” Science, vol. 336, no. 6086, pp. 1283–1286, 2012. [Online]. Available: http://doi.org/10.1126/science.1220513
M. V. G. Dutt, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science, vol. 316, no. 5829, pp. 1312–1316, 2007. [Online]. Available: http://www.doi.org/10.1126/science.1139831
B. C. Rose, “Observation of an environmentally insensitive solid-state spin defect in diamond,” Science, vol. 361, pp. 60–63, 2018. [Online]. Available: https://www.doi.org/10.1126/science.aao0290
A. Sipahigil, “An integrated diamond nanophotonics platform for quantum-optical networks,” Science, vol. 354, pp. 847–850, 2016. [Online]. Available: https://doi.org/10.1126/science.aah6875
C. P. Anderson, “Electrical and optical control of single spins integrated in scalable semiconductor devices,” Science, vol. 366, pp. 1225–1230, 2019. [Online]. Available: https://doi.org/doi/10.1126/science.aax9406
T. Zhong, “Nanophotonic rare-earth quantum memory with optically controlled retrieval,” Science, vol. 357, no. 6358, pp. 1392–1395, 2017. [Online]. Available: https://doi.org/10.1126/science.aan5959
J. Hofmann, “Heralded entanglement between widely separated atoms,” Science, vol. 336, no. 6090, pp. 72–75, 2012. [Online]. Available: https://doi.org/10.1126/science.1221856
S. Daiss, “A quantum-logic gate between distant quantum-network modules,” Science, vol. 371, no. 6529, pp. 614–617, 2021. [Online]. Available: https://doi.org/10.1126/science.abe3150
W. Pfaff, “Unconditional quantum teleportation between distant solid-state quantum bits,” Science, vol. 345, no. 6196, pp. 532–535, 2014. [Online]. Available: https://doi.org/10.1126/science.1253512
N. Kalb, “Entanglement distillation between solid-state quantum network nodes,” Science, vol. 356, no. 6341, pp. 928–932, 2017. [Online]. Available: http://doi.org/10.1126/science.aan0070
R. E. Evans, “Photon-mediated interactions between quantum emitters in a diamond nanocavity,” Science, vol. 362, pp. 662–665, 2018. [Online]. Available: https://doi.org/10.1126/science.aau4691
M. Pompili, “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, 2021. [Online]. Available: http://doi.org/10.1126/science.abg1919
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, 2018, Art. no. . [Online]. Available: http://doi.org/10.1126/science.aam9288
M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, pp. 1169–1174, 2013. [Online]. Available: https://doi.org/10.1126/science.1231930
V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, pp. 1330–1336, 2004. [Online]. Available: https://doi.org/10.1126/science.1104149
D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, pp. 255–261, 1995. [Online]. Available: https://doi.org/10.1126/science.270.5234.255
H.-S. Zhong, “Quantum computational advantage using photons,” Science, vol. 370, pp. 1460–1463, 2020. [Online]. Available: https://doi.org/10.1126/science.abe8770
Sensors Actuators A (1)
K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, “SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures,” Sensors Actuators A, vol. 40, no. 1, pp. 63–70, 1994.
Small (1)
S. Pezzagna, “Nanoscale engineering and optical addressing of single spins in diamond,” Small, vol. 6, pp. 2117–2121, 2010. [Online]. Available: https://doi.org/10.1002/smll.201000902
Supercond. Sci. Technol. (1)
R. Körber, “SQUIDS in biomagnetism: A roadmap towards improved healthcare,” Supercond. Sci. Technol., vol. 29, no. 11, 2016, Art. no. . [Online]. Available: https://doi.org/10.1088/0953-2048/29/11/113001
Zeitschrift fur Physik (1)
W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik, vol. 9, pp. 349–352, 1922. [Online]. Available: http://doi.org/10.1007/BF01326983
Other (24)
G. Burkard, T. D. Ladd, J. M. Nichol, A. Pan, and J. R. Petta, “Semiconductor spin qubits,” 2021, arXiv:2112.08863. [Online]. Available: https://doi.org/10.48550/arXiv.2112.08863
M. E. Wandel, “Attenuation in silica-based optical fibers,” Ph.D. dissertation, DTU, 2006. [Online]. Available: https://orbit.dtu.dk/en/publications/attenuation-in-silica-based-optical-fibers
P.-J. Stas, “Robust multi-qubit quantum network node with integrated error detection,” 2022, arXiv:2207.13128. [Online]. Available: https://doi.org/10.48550/arXiv.2207.13128
D. M. Lukin, “Optical superradiance of a pair of color centers in an integrated silicon-carbide-on-insulator microresonator,” 2022, arXiv:2202.04845. [Online]. Available: https://doi.org/10.48550/arXiv.2202.04845
Z.-H. Zhang, “Neutral silicon vacancy centers in undoped diamond via surface control,” 2022, arXiv:2206.13698. [Online]. Available: http://arxiv.org/abs/2206.13698
J. N. Becker and E. Neu, “The silicon vacancy center in diamond,” vol. 103, pp. 201–235, 2020. [Online]. Available: https://doi.org/10.1016/bs.semsem.2020.04.001
H. Raniwala, S. Krastanov, M. Eichenfield, and D. Englund, “A spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity,” 2022, arXiv:2202.06999. [Online]. Available: https://doi.org/10.48550/arXiv.2202.06999
A. Zaitsev, Optical Properties of Diamond. Berlin, Heidelberg, Germany: Springer-Verlag, 2001. [Online]. Available: https://doi.org/10.1007/978-3-662-04548-0
A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,” 2022, arXiv:2202.01819. [Online]. Available: https://doi.org/10.48550/arXiv.2202.01819
R. P. Mildren, Intrinsic Optical Properties of Diamond.Hoboken, NJ, USA: Wiley, 2013, pp. 1–34. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527648603.ch1
J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic crystals,” in Photonic Crystals.Princeton, NJ, USA: Princeton Univ. Press, 2011. [Online]. Available: https://doi.org/10.2307/j.ctvcm4gz9
N. J. Lambert, A. Rueda, F. Sedlmeir, and H. G. Schwefel, “Coherent conversion between microwave and optical photons–An overview of physical implementations,” Adv. Quantum Technol., vol. 3, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.1002/qute.201900077
P. Behjat, P. K. Shandilya, B. Behera, N. C. Carvalho, and P. E. Barclay, “Multimode diamond cavity optomechanics,” in Proc. Conf. Lasers Electro-Opt.: Sci. Innov., 2022, pp. 1–2. [Online]. Available: https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2022-STh5F.1
D. Rani, O. R. Opaluch, and E. Neu, “Recent advances in single crystal diamond device fabrication for photonics, sensing and nanomechanics,” Micromachines, vol. 12, no. 1, 2020, Art. no. . [Online]. Available: https://doi.org/10.3390/mi12010036
J. Arjona Martínez, “Photonic indistinguishability of the tin-vacancy center in nanostructured diamond,” 2022, arXiv:2206.15239. [Online]. Available: https://doi.org/10.48550/arXiv.2206.15239
R. Kleiner, D. Koelle, F. Ludwig, and J. Clarke, “Superconducting quantum interference devices: State of the art and applications,” Proc. IEEE, vol. 92, no. 10, pp. 1534–1548, 2004. [Online]. Available: https://doi.org/10.1109/JPROC.2004.833655
M. Wu, A. C. Hryciw, B. Khanaliloo, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Photonic crystal paddle nanocavities for optomechanical torsion sensing,” in Proc. Conf. Lasers Electro-Opt., 2012, Paper CW1M.7. [Online]. Available: https://doi.org/10.1364/CLEO_SI.2012.CW1M.7
Z. Zhao, “Sub-nanotesla sensitivity at the nanoscale with a single spin,” 2022, arXiv:2205.04415. [Online]. Available: https://doi.org/10.48550/arXiv.2205.04415
B. A. McCullian, H. F. H. Cheung, H. Y. Chen, and G. D. Fuchs, “Quantifying NV-center spectral diffusion by symmetry,” 2022, arXiv:2206.11362. [Online]. Available: https://doi.org/10.48550/arXiv.2206.11362
A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, “On-chip distribution of quantum information using traveling phonons,” 2022, arXiv:2204.05066. [Online]. Available: https://doi.org/10.48550/arXiv.2204.05066
P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, “Hybrid mechanical systems” in Cavity Optomechanics.Berlin, Germany: Springer, 2014, pp. 327–351. [Online]. Available: https://doi.org/10.1007/978-3-642-55312-7_14
L. Orphal-Kobin, “Optically coherent nitrogen-vacancy defect centers in diamond nanostructures,” 2022, arXiv:2203.05605. [Online]. Available: https://doi.org/10.48550/arXiv.2203.05605
Y. Narita, “Identical photons from multiple tin-vacancy centers in diamond,” 2022, arXiv:2208.06275. [Online]. Available: https://doi.org/10.48550/arXiv.2208.06275
H. Kurokawa, M. Yamamoto, Y. Sekiguchi, and H. Kosaka, “Remote entanglement of superconducting qubits via solid-state spin quantum memories,” 2022, arXiv:2202.07888. [Online]. Available: https://doi.org/10.48550/arXiv.2202.07888
Cited By
Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.