Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 6,
  • pp. 1690-1697
  • (2022)

Transparent Optical-THz-Optical Link at 240/192 Gbit/s Over 5/115 m Enabled by Plasmonics

Open Access Open Access

Abstract

A transparentOptical-subTHz-Optical link providing record-high single line rates of 240 Gbit/s and 192 Gbit/s on a single optical carrier over distances from 5 to 115 m is demonstrated. Besides a direct mapping of the optical to a 230 GHz subTHz-carrier frequency by means of a uni-traveling carrier (UTC) photodiode, we demonstrate direct conversion of data from the subTHz domain back to the optical domain by a plasmonic modulator. It is shown that the subTHz-to-optical upconversion can even be performed at good quality without any electrical amplifiers. Finally, at the receiver, the local oscillator is employed to directly map the optical signal back to the electrical baseband within a coherent receiver.

PDF Article

References

  • View by:

  1. T. Nagatsuma, “Advances in terahertz communications accelerated by photonics technologies,” in Proc. 24th OptoElectron. Commun. Conf., 2019, pp. 1–3.
  2. J. Ma, L. Moeller, and J. Federici, “Experimental comparison of terahertz and infrared signaling in controlled atmospheric turbulence,” J. Infrared, Millimeter, Terahertz Waves, vol. 36, no. 2, pp. 130–143, 2015.
  3. Y. Yang, M. Mandehgar, and D. R. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 383–386, 2015.
  4. Y. Amarasinghe, W. Zhang, R. Zhang, D. M. Mittleman, and J. Ma, “Scattering of terahertz waves by snow,” J. Infrared, Millimeter, Terahertz Waves, vol. 41, no. 2, pp. 215–224, 2020.
  5. Q. Jing, D. Liu, and J. Tong, “Study on the scattering effect of terahertz waves in near-surface atmosphere,” IEEE Access, vol. 6, pp. 49007–49018, 2018.
  6. K. Su, L. Moeller, R. B. Barat, and J. F. Federici, “Experimental comparison of terahertz and infrared data signal attenuation in dust clouds,” J. Opt. Soc. Amer. A, vol. 29, no. 11, pp. 2360–2366, 2012.
  7. S. Koenig, “Wireless sub-THz communication system with high data rate,” Nature Photon., vol. 7, no. 12, 2013, Art. no. .
  8. H. Shams, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photon. J., vol. 7, no. 3, 2015, Art. no. .
  9. T. Nagatsuma, “Real-time 100-Gbit/s QPSK transmission using photonics-based 300-GHz-band wireless link,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2016, pp. 27–30.
  10. X. Yu, “160 Gbit/s photonics wireless transmission in the 300-500 GHz band,” APL Photon., vol. 1, no. 8, 2016, Art. no. .
  11. X. Pang, “260 Gbit/s photonic-wireless link in the THz band,” in Proc. IEEE Photon. Conf., 2016, pp. 1–2.
  12. X. Pang, “Single channel 106 Gbit/s 16QAM wireless transmission in the 0.4 THz band,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper .
  13. V. K. Chinni, “Single-channel 100 Gbit/s transmission using III–V UTC-PDs for future IEEE 802.15.3d wireless links in the 300 GHz band,” Electron. Lett., vol. 54, no. 10, pp. 638–640, 2018.
  14. A. Udalcovs, “107.1-Gbps net-rate transmission over a joint 51km-fibre-and-10.7 m-wireless link for terahertz radio access networks,” in Proc. 45th Eur. Conf. Opt. Commun., 2019, pp. 1–4.
  15. X. Li, “132-Gb/s photonics-aided single-carrier wireless terahertz-wave signal transmission at 450GHz enabled by 64QAM modulation and probabilistic shaping,” in Proc. Opt. Fiber Commun. Conf. Exhibit., 2019, pp. 1–3.
  16. T. Harter, “Generalized Kramers–Kronig receiver for coherent terahertz communications,” Nature Photon., vol. 14, no. 10, pp. 601–606, 2020.
  17. C. Castro, R. Elschner, T. Merkle, C. Schubert, and R. Freund, “100 Gb/s real-time transmission over a THz wireless fiber extender using a digital-coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2020, Paper .
  18. J. Tebart, M. Steeg, F. Exner, A. Czylwik, and A. Stöhr, “Frequency-Scalable coherent radio-over-fiber architecture for 100 Gbit/s wireless transmission,” URSI Radio Sci. Lett., vol. 2, pp. 1–5, 2020.
  19. S. Jia, “2×300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission,” J. Lightw. Technol., vol. 38, no. 17, pp. 4715–4721, 2020.
  20. X. Li, “1-Tb/s millimeter-wave signal wireless delivery at D-band,” J. Lightw. Technol., vol. 37, no. 1, pp. 196–204, 2019.
  21. T. Nagatsuma, “Terahertz wireless communications based on photonics technologies,” Opt. Exp., vol. 21, no. 20, pp. 23736–23747, 2013.
  22. T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photon. Rev., vol. 3, no. 1–2, pp. 123–137, 2009.
  23. C. Jastrow, “Wireless digital data transmission at 300 GHz,” Electron. Lett., vol. 46, no. 9, pp. 661–663, 2010.
  24. I. Kallfass, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron., vol. 98, no. 12, pp. 1081–1090, 2015.
  25. T. Harter, “Wireless THz link with optoelectronic transmitter and receiver,” Optica, vol. 6, no. 8, pp. 1063–1070, 2019.
  26. A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightw. Technol., vol. 33, no. 3, pp. 579–587, 2015.
  27. C. Yang, X. Li, J. Xiao, N. Chi, and J. Yu, “Fiber-wireless integration for 80 Gbps polarization division multiplexing− 16QAM signal transmission at W-band without RF down conversion,” Microw. Opt. Technol. Lett., vol. 57, no. 1, pp. 9–13, 2015.
  28. T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic downconverting receiver using optical phase modulation,” in Proc. IEEE MTT-S Int. Microw. Symp., 2014, pp. 1–3.
  29. P. T. Dat, “Transparent fiber–radio–fiber bridge at 101 GHz using optical modulator and direct photonic down-conversion,” in Proc. Opt. Fiber Commun. Conf. Exhibit., 2021, pp. 1–3.
  30. Y. Salamin, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett., vol. 15, no. 12, pp. 8342–8346, 2015.
  31. Y. Salamin, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nature Photon., vol. 12, no. 12, pp. 749–753, 2018.
  32. S. Ummethala, “THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator,” Nature Photon., vol. 13, no. 8, pp. 519–524, 2019.
  33. Y. Salamin, “300 GHz plasmonic mixer,” in Proc. Int. Topical Meeting Microw. Photon., 2019, pp. 1–4.
  34. M. Burla, “500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon., vol. 4, no. 5, 2019, Art. no. .
  35. Y. Salamin, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nature Commun., vol. 10, no. 1, 2019, Art. no. .
  36. Y. Horst, “Transparent optical-THz-optical link transmission over 5/115 m at 240/190 Gbit/s enabled by plasmonics,” in Proc. Opt. Fiber Commun. Conf. Exhibit., 2021, pp. 1–3.
  37. R. Schmogrow, “Nyquist frequency division multiplexing for optical communications,” in Proc. CLEO: Sci. Innov., 2012, Paper .
  38. International Telecommunication Union, ITU-R P.676-6, Attenuation by Atmospheric Gases, ITU, 2005.
  39. A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 33, no. 20, pp. 4338–4352, 2015.
  40. W. Heni, “108 Gbit/s plasmonic Mach–Zehnder modulator with >70-GHz electrical bandwidth,” J. Lightw. Technol., vol. 34, no. 2, pp. 393–400, 2016.
  41. A. Melikyan, “High-speed plasmonic phase modulators,” Nature Photon., vol. 8, no. 3, pp. 229–233, 2014.
  42. C. Haffner, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, no. 8, 2015, Art. no. .
  43. C. Haffner, “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379, 2016.
  44. W. Heni, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Exp., vol. 25, no. 3, pp. 2627–2653, 2017.
  45. A. Melikyan, “Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s,” Opt. Exp., vol. 23, no. 8, pp. 9938–9946, 2015.
  46. W. Heni, “Plasmonic IQ modulators with attojoule per bit electrical energy consumption,” Nature Commun., vol. 10, no. 1, 2019, Art. no. .

2020 (4)

Y. Amarasinghe, W. Zhang, R. Zhang, D. M. Mittleman, and J. Ma, “Scattering of terahertz waves by snow,” J. Infrared, Millimeter, Terahertz Waves, vol. 41, no. 2, pp. 215–224, 2020.

T. Harter, “Generalized Kramers–Kronig receiver for coherent terahertz communications,” Nature Photon., vol. 14, no. 10, pp. 601–606, 2020.

J. Tebart, M. Steeg, F. Exner, A. Czylwik, and A. Stöhr, “Frequency-Scalable coherent radio-over-fiber architecture for 100 Gbit/s wireless transmission,” URSI Radio Sci. Lett., vol. 2, pp. 1–5, 2020.

S. Jia, “2×300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission,” J. Lightw. Technol., vol. 38, no. 17, pp. 4715–4721, 2020.

2019 (6)

X. Li, “1-Tb/s millimeter-wave signal wireless delivery at D-band,” J. Lightw. Technol., vol. 37, no. 1, pp. 196–204, 2019.

T. Harter, “Wireless THz link with optoelectronic transmitter and receiver,” Optica, vol. 6, no. 8, pp. 1063–1070, 2019.

S. Ummethala, “THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator,” Nature Photon., vol. 13, no. 8, pp. 519–524, 2019.

M. Burla, “500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon., vol. 4, no. 5, 2019, Art. no. .

Y. Salamin, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nature Commun., vol. 10, no. 1, 2019, Art. no. .

W. Heni, “Plasmonic IQ modulators with attojoule per bit electrical energy consumption,” Nature Commun., vol. 10, no. 1, 2019, Art. no. .

2018 (3)

Y. Salamin, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nature Photon., vol. 12, no. 12, pp. 749–753, 2018.

Q. Jing, D. Liu, and J. Tong, “Study on the scattering effect of terahertz waves in near-surface atmosphere,” IEEE Access, vol. 6, pp. 49007–49018, 2018.

V. K. Chinni, “Single-channel 100 Gbit/s transmission using III–V UTC-PDs for future IEEE 802.15.3d wireless links in the 300 GHz band,” Electron. Lett., vol. 54, no. 10, pp. 638–640, 2018.

2017 (1)

W. Heni, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Exp., vol. 25, no. 3, pp. 2627–2653, 2017.

2016 (3)

W. Heni, “108 Gbit/s plasmonic Mach–Zehnder modulator with >70-GHz electrical bandwidth,” J. Lightw. Technol., vol. 34, no. 2, pp. 393–400, 2016.

C. Haffner, “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379, 2016.

X. Yu, “160 Gbit/s photonics wireless transmission in the 300-500 GHz band,” APL Photon., vol. 1, no. 8, 2016, Art. no. .

2015 (10)

H. Shams, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photon. J., vol. 7, no. 3, 2015, Art. no. .

J. Ma, L. Moeller, and J. Federici, “Experimental comparison of terahertz and infrared signaling in controlled atmospheric turbulence,” J. Infrared, Millimeter, Terahertz Waves, vol. 36, no. 2, pp. 130–143, 2015.

Y. Yang, M. Mandehgar, and D. R. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 383–386, 2015.

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightw. Technol., vol. 33, no. 3, pp. 579–587, 2015.

C. Yang, X. Li, J. Xiao, N. Chi, and J. Yu, “Fiber-wireless integration for 80 Gbps polarization division multiplexing− 16QAM signal transmission at W-band without RF down conversion,” Microw. Opt. Technol. Lett., vol. 57, no. 1, pp. 9–13, 2015.

Y. Salamin, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett., vol. 15, no. 12, pp. 8342–8346, 2015.

C. Haffner, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, no. 8, 2015, Art. no. .

A. Melikyan, “Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s,” Opt. Exp., vol. 23, no. 8, pp. 9938–9946, 2015.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 33, no. 20, pp. 4338–4352, 2015.

I. Kallfass, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron., vol. 98, no. 12, pp. 1081–1090, 2015.

2014 (1)

A. Melikyan, “High-speed plasmonic phase modulators,” Nature Photon., vol. 8, no. 3, pp. 229–233, 2014.

2013 (2)

T. Nagatsuma, “Terahertz wireless communications based on photonics technologies,” Opt. Exp., vol. 21, no. 20, pp. 23736–23747, 2013.

S. Koenig, “Wireless sub-THz communication system with high data rate,” Nature Photon., vol. 7, no. 12, 2013, Art. no. .

2012 (1)

K. Su, L. Moeller, R. B. Barat, and J. F. Federici, “Experimental comparison of terahertz and infrared data signal attenuation in dust clouds,” J. Opt. Soc. Amer. A, vol. 29, no. 11, pp. 2360–2366, 2012.

2010 (1)

C. Jastrow, “Wireless digital data transmission at 300 GHz,” Electron. Lett., vol. 46, no. 9, pp. 661–663, 2010.

2009 (1)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photon. Rev., vol. 3, no. 1–2, pp. 123–137, 2009.

2005 (1)

International Telecommunication Union, ITU-R P.676-6, Attenuation by Atmospheric Gases, ITU, 2005.

Agrell, E.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 33, no. 20, pp. 4338–4352, 2015.

Alvarado, A.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 33, no. 20, pp. 4338–4352, 2015.

Amarasinghe, Y.

Y. Amarasinghe, W. Zhang, R. Zhang, D. M. Mittleman, and J. Ma, “Scattering of terahertz waves by snow,” J. Infrared, Millimeter, Terahertz Waves, vol. 41, no. 2, pp. 215–224, 2020.

Barat, R. B.

K. Su, L. Moeller, R. B. Barat, and J. F. Federici, “Experimental comparison of terahertz and infrared data signal attenuation in dust clouds,” J. Opt. Soc. Amer. A, vol. 29, no. 11, pp. 2360–2366, 2012.

Bayvel, P.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 33, no. 20, pp. 4338–4352, 2015.

Burla, M.

M. Burla, “500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon., vol. 4, no. 5, 2019, Art. no. .

Castro, C.

C. Castro, R. Elschner, T. Merkle, C. Schubert, and R. Freund, “100 Gb/s real-time transmission over a THz wireless fiber extender using a digital-coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2020, Paper .

Chi, N.

C. Yang, X. Li, J. Xiao, N. Chi, and J. Yu, “Fiber-wireless integration for 80 Gbps polarization division multiplexing− 16QAM signal transmission at W-band without RF down conversion,” Microw. Opt. Technol. Lett., vol. 57, no. 1, pp. 9–13, 2015.

Chinni, V. K.

V. K. Chinni, “Single-channel 100 Gbit/s transmission using III–V UTC-PDs for future IEEE 802.15.3d wireless links in the 300 GHz band,” Electron. Lett., vol. 54, no. 10, pp. 638–640, 2018.

Clark, T. R.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic downconverting receiver using optical phase modulation,” in Proc. IEEE MTT-S Int. Microw. Symp., 2014, pp. 1–3.

Czylwik, A.

J. Tebart, M. Steeg, F. Exner, A. Czylwik, and A. Stöhr, “Frequency-Scalable coherent radio-over-fiber architecture for 100 Gbit/s wireless transmission,” URSI Radio Sci. Lett., vol. 2, pp. 1–5, 2020.

Dat, P. T.

P. T. Dat, “Transparent fiber–radio–fiber bridge at 101 GHz using optical modulator and direct photonic down-conversion,” in Proc. Opt. Fiber Commun. Conf. Exhibit., 2021, pp. 1–3.

Elschner, R.

C. Castro, R. Elschner, T. Merkle, C. Schubert, and R. Freund, “100 Gb/s real-time transmission over a THz wireless fiber extender using a digital-coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2020, Paper .

Exner, F.

J. Tebart, M. Steeg, F. Exner, A. Czylwik, and A. Stöhr, “Frequency-Scalable coherent radio-over-fiber architecture for 100 Gbit/s wireless transmission,” URSI Radio Sci. Lett., vol. 2, pp. 1–5, 2020.

Federici, J.

J. Ma, L. Moeller, and J. Federici, “Experimental comparison of terahertz and infrared signaling in controlled atmospheric turbulence,” J. Infrared, Millimeter, Terahertz Waves, vol. 36, no. 2, pp. 130–143, 2015.

Federici, J. F.

K. Su, L. Moeller, R. B. Barat, and J. F. Federici, “Experimental comparison of terahertz and infrared data signal attenuation in dust clouds,” J. Opt. Soc. Amer. A, vol. 29, no. 11, pp. 2360–2366, 2012.

Fice, M. J.

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightw. Technol., vol. 33, no. 3, pp. 579–587, 2015.

Freund, R.

C. Castro, R. Elschner, T. Merkle, C. Schubert, and R. Freund, “100 Gb/s real-time transmission over a THz wireless fiber extender using a digital-coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2020, Paper .

Grischkowsky, D. R.

Y. Yang, M. Mandehgar, and D. R. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 383–386, 2015.

Haffner, C.

C. Haffner, “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379, 2016.

C. Haffner, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, no. 8, 2015, Art. no. .

Harter, T.

T. Harter, “Generalized Kramers–Kronig receiver for coherent terahertz communications,” Nature Photon., vol. 14, no. 10, pp. 601–606, 2020.

T. Harter, “Wireless THz link with optoelectronic transmitter and receiver,” Optica, vol. 6, no. 8, pp. 1063–1070, 2019.

Heni, W.

W. Heni, “Plasmonic IQ modulators with attojoule per bit electrical energy consumption,” Nature Commun., vol. 10, no. 1, 2019, Art. no. .

W. Heni, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Exp., vol. 25, no. 3, pp. 2627–2653, 2017.

W. Heni, “108 Gbit/s plasmonic Mach–Zehnder modulator with >70-GHz electrical bandwidth,” J. Lightw. Technol., vol. 34, no. 2, pp. 393–400, 2016.

Horst, Y.

Y. Horst, “Transparent optical-THz-optical link transmission over 5/115 m at 240/190 Gbit/s enabled by plasmonics,” in Proc. Opt. Fiber Commun. Conf. Exhibit., 2021, pp. 1–3.

Ishibashi, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photon. Rev., vol. 3, no. 1–2, pp. 123–137, 2009.

Ito, H.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photon. Rev., vol. 3, no. 1–2, pp. 123–137, 2009.

Jastrow, C.

C. Jastrow, “Wireless digital data transmission at 300 GHz,” Electron. Lett., vol. 46, no. 9, pp. 661–663, 2010.

Jia, S.

S. Jia, “2×300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission,” J. Lightw. Technol., vol. 38, no. 17, pp. 4715–4721, 2020.

Jing, Q.

Q. Jing, D. Liu, and J. Tong, “Study on the scattering effect of terahertz waves in near-surface atmosphere,” IEEE Access, vol. 6, pp. 49007–49018, 2018.

Kallfass, I.

I. Kallfass, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron., vol. 98, no. 12, pp. 1081–1090, 2015.

Koenig, S.

S. Koenig, “Wireless sub-THz communication system with high data rate,” Nature Photon., vol. 7, no. 12, 2013, Art. no. .

Lavery, D.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 33, no. 20, pp. 4338–4352, 2015.

Li, X.

X. Li, “1-Tb/s millimeter-wave signal wireless delivery at D-band,” J. Lightw. Technol., vol. 37, no. 1, pp. 196–204, 2019.

C. Yang, X. Li, J. Xiao, N. Chi, and J. Yu, “Fiber-wireless integration for 80 Gbps polarization division multiplexing− 16QAM signal transmission at W-band without RF down conversion,” Microw. Opt. Technol. Lett., vol. 57, no. 1, pp. 9–13, 2015.

X. Li, “132-Gb/s photonics-aided single-carrier wireless terahertz-wave signal transmission at 450GHz enabled by 64QAM modulation and probabilistic shaping,” in Proc. Opt. Fiber Commun. Conf. Exhibit., 2019, pp. 1–3.

Liu, D.

Q. Jing, D. Liu, and J. Tong, “Study on the scattering effect of terahertz waves in near-surface atmosphere,” IEEE Access, vol. 6, pp. 49007–49018, 2018.

Ma, J.

Y. Amarasinghe, W. Zhang, R. Zhang, D. M. Mittleman, and J. Ma, “Scattering of terahertz waves by snow,” J. Infrared, Millimeter, Terahertz Waves, vol. 41, no. 2, pp. 215–224, 2020.

J. Ma, L. Moeller, and J. Federici, “Experimental comparison of terahertz and infrared signaling in controlled atmospheric turbulence,” J. Infrared, Millimeter, Terahertz Waves, vol. 36, no. 2, pp. 130–143, 2015.

Maher, R.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 33, no. 20, pp. 4338–4352, 2015.

Mandehgar, M.

Y. Yang, M. Mandehgar, and D. R. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 383–386, 2015.

McKenna, T. P.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic downconverting receiver using optical phase modulation,” in Proc. IEEE MTT-S Int. Microw. Symp., 2014, pp. 1–3.

Melikyan, A.

A. Melikyan, “Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s,” Opt. Exp., vol. 23, no. 8, pp. 9938–9946, 2015.

A. Melikyan, “High-speed plasmonic phase modulators,” Nature Photon., vol. 8, no. 3, pp. 229–233, 2014.

Merkle, T.

C. Castro, R. Elschner, T. Merkle, C. Schubert, and R. Freund, “100 Gb/s real-time transmission over a THz wireless fiber extender using a digital-coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2020, Paper .

Mittleman, D. M.

Y. Amarasinghe, W. Zhang, R. Zhang, D. M. Mittleman, and J. Ma, “Scattering of terahertz waves by snow,” J. Infrared, Millimeter, Terahertz Waves, vol. 41, no. 2, pp. 215–224, 2020.

Moeller, L.

J. Ma, L. Moeller, and J. Federici, “Experimental comparison of terahertz and infrared signaling in controlled atmospheric turbulence,” J. Infrared, Millimeter, Terahertz Waves, vol. 36, no. 2, pp. 130–143, 2015.

K. Su, L. Moeller, R. B. Barat, and J. F. Federici, “Experimental comparison of terahertz and infrared data signal attenuation in dust clouds,” J. Opt. Soc. Amer. A, vol. 29, no. 11, pp. 2360–2366, 2012.

Nagatsuma, T.

T. Nagatsuma, “Terahertz wireless communications based on photonics technologies,” Opt. Exp., vol. 21, no. 20, pp. 23736–23747, 2013.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photon. Rev., vol. 3, no. 1–2, pp. 123–137, 2009.

T. Nagatsuma, “Advances in terahertz communications accelerated by photonics technologies,” in Proc. 24th OptoElectron. Commun. Conf., 2019, pp. 1–3.

T. Nagatsuma, “Real-time 100-Gbit/s QPSK transmission using photonics-based 300-GHz-band wireless link,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2016, pp. 27–30.

Nanzer, J. A.

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic downconverting receiver using optical phase modulation,” in Proc. IEEE MTT-S Int. Microw. Symp., 2014, pp. 1–3.

Pang, X.

X. Pang, “260 Gbit/s photonic-wireless link in the THz band,” in Proc. IEEE Photon. Conf., 2016, pp. 1–2.

X. Pang, “Single channel 106 Gbit/s 16QAM wireless transmission in the 0.4 THz band,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper .

Renaud, C. C.

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightw. Technol., vol. 33, no. 3, pp. 579–587, 2015.

Salamin, Y.

Y. Salamin, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nature Commun., vol. 10, no. 1, 2019, Art. no. .

Y. Salamin, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nature Photon., vol. 12, no. 12, pp. 749–753, 2018.

Y. Salamin, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett., vol. 15, no. 12, pp. 8342–8346, 2015.

Y. Salamin, “300 GHz plasmonic mixer,” in Proc. Int. Topical Meeting Microw. Photon., 2019, pp. 1–4.

Schmogrow, R.

R. Schmogrow, “Nyquist frequency division multiplexing for optical communications,” in Proc. CLEO: Sci. Innov., 2012, Paper .

Schubert, C.

C. Castro, R. Elschner, T. Merkle, C. Schubert, and R. Freund, “100 Gb/s real-time transmission over a THz wireless fiber extender using a digital-coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2020, Paper .

Seeds, A. J.

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightw. Technol., vol. 33, no. 3, pp. 579–587, 2015.

Shams, H.

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightw. Technol., vol. 33, no. 3, pp. 579–587, 2015.

H. Shams, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photon. J., vol. 7, no. 3, 2015, Art. no. .

Steeg, M.

J. Tebart, M. Steeg, F. Exner, A. Czylwik, and A. Stöhr, “Frequency-Scalable coherent radio-over-fiber architecture for 100 Gbit/s wireless transmission,” URSI Radio Sci. Lett., vol. 2, pp. 1–5, 2020.

Stöhr, A.

J. Tebart, M. Steeg, F. Exner, A. Czylwik, and A. Stöhr, “Frequency-Scalable coherent radio-over-fiber architecture for 100 Gbit/s wireless transmission,” URSI Radio Sci. Lett., vol. 2, pp. 1–5, 2020.

Su, K.

K. Su, L. Moeller, R. B. Barat, and J. F. Federici, “Experimental comparison of terahertz and infrared data signal attenuation in dust clouds,” J. Opt. Soc. Amer. A, vol. 29, no. 11, pp. 2360–2366, 2012.

Tebart, J.

J. Tebart, M. Steeg, F. Exner, A. Czylwik, and A. Stöhr, “Frequency-Scalable coherent radio-over-fiber architecture for 100 Gbit/s wireless transmission,” URSI Radio Sci. Lett., vol. 2, pp. 1–5, 2020.

Tong, J.

Q. Jing, D. Liu, and J. Tong, “Study on the scattering effect of terahertz waves in near-surface atmosphere,” IEEE Access, vol. 6, pp. 49007–49018, 2018.

Udalcovs, A.

A. Udalcovs, “107.1-Gbps net-rate transmission over a joint 51km-fibre-and-10.7 m-wireless link for terahertz radio access networks,” in Proc. 45th Eur. Conf. Opt. Commun., 2019, pp. 1–4.

Ummethala, S.

S. Ummethala, “THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator,” Nature Photon., vol. 13, no. 8, pp. 519–524, 2019.

Xiao, J.

C. Yang, X. Li, J. Xiao, N. Chi, and J. Yu, “Fiber-wireless integration for 80 Gbps polarization division multiplexing− 16QAM signal transmission at W-band without RF down conversion,” Microw. Opt. Technol. Lett., vol. 57, no. 1, pp. 9–13, 2015.

Yang, C.

C. Yang, X. Li, J. Xiao, N. Chi, and J. Yu, “Fiber-wireless integration for 80 Gbps polarization division multiplexing− 16QAM signal transmission at W-band without RF down conversion,” Microw. Opt. Technol. Lett., vol. 57, no. 1, pp. 9–13, 2015.

Yang, Y.

Y. Yang, M. Mandehgar, and D. R. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 383–386, 2015.

Yu, J.

C. Yang, X. Li, J. Xiao, N. Chi, and J. Yu, “Fiber-wireless integration for 80 Gbps polarization division multiplexing− 16QAM signal transmission at W-band without RF down conversion,” Microw. Opt. Technol. Lett., vol. 57, no. 1, pp. 9–13, 2015.

Yu, X.

X. Yu, “160 Gbit/s photonics wireless transmission in the 300-500 GHz band,” APL Photon., vol. 1, no. 8, 2016, Art. no. .

Zhang, R.

Y. Amarasinghe, W. Zhang, R. Zhang, D. M. Mittleman, and J. Ma, “Scattering of terahertz waves by snow,” J. Infrared, Millimeter, Terahertz Waves, vol. 41, no. 2, pp. 215–224, 2020.

Zhang, W.

Y. Amarasinghe, W. Zhang, R. Zhang, D. M. Mittleman, and J. Ma, “Scattering of terahertz waves by snow,” J. Infrared, Millimeter, Terahertz Waves, vol. 41, no. 2, pp. 215–224, 2020.

APL Photon. (2)

X. Yu, “160 Gbit/s photonics wireless transmission in the 300-500 GHz band,” APL Photon., vol. 1, no. 8, 2016, Art. no. .

M. Burla, “500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics,” APL Photon., vol. 4, no. 5, 2019, Art. no. .

Electron. Lett. (2)

C. Jastrow, “Wireless digital data transmission at 300 GHz,” Electron. Lett., vol. 46, no. 9, pp. 661–663, 2010.

V. K. Chinni, “Single-channel 100 Gbit/s transmission using III–V UTC-PDs for future IEEE 802.15.3d wireless links in the 300 GHz band,” Electron. Lett., vol. 54, no. 10, pp. 638–640, 2018.

IEEE Access (1)

Q. Jing, D. Liu, and J. Tong, “Study on the scattering effect of terahertz waves in near-surface atmosphere,” IEEE Access, vol. 6, pp. 49007–49018, 2018.

IEEE Photon. J. (1)

H. Shams, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photon. J., vol. 7, no. 3, 2015, Art. no. .

IEEE Photon. Technol. Lett. (1)

Y. Yang, M. Mandehgar, and D. R. Grischkowsky, “Broadband THz signals propagate through dense fog,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 383–386, 2015.

IEICE Trans. Electron. (1)

I. Kallfass, “Towards MMIC-based 300 GHz indoor wireless communication systems,” IEICE Trans. Electron., vol. 98, no. 12, pp. 1081–1090, 2015.

ITU-R P.676-6, Attenuation by Atmospheric Gases (1)

International Telecommunication Union, ITU-R P.676-6, Attenuation by Atmospheric Gases, ITU, 2005.

J. Infrared, Millimeter, Terahertz Waves (2)

Y. Amarasinghe, W. Zhang, R. Zhang, D. M. Mittleman, and J. Ma, “Scattering of terahertz waves by snow,” J. Infrared, Millimeter, Terahertz Waves, vol. 41, no. 2, pp. 215–224, 2020.

J. Ma, L. Moeller, and J. Federici, “Experimental comparison of terahertz and infrared signaling in controlled atmospheric turbulence,” J. Infrared, Millimeter, Terahertz Waves, vol. 36, no. 2, pp. 130–143, 2015.

J. Lightw. Technol. (5)

S. Jia, “2×300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission,” J. Lightw. Technol., vol. 38, no. 17, pp. 4715–4721, 2020.

X. Li, “1-Tb/s millimeter-wave signal wireless delivery at D-band,” J. Lightw. Technol., vol. 37, no. 1, pp. 196–204, 2019.

A. J. Seeds, H. Shams, M. J. Fice, and C. C. Renaud, “Terahertz photonics for wireless communications,” J. Lightw. Technol., vol. 33, no. 3, pp. 579–587, 2015.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightw. Technol., vol. 33, no. 20, pp. 4338–4352, 2015.

W. Heni, “108 Gbit/s plasmonic Mach–Zehnder modulator with >70-GHz electrical bandwidth,” J. Lightw. Technol., vol. 34, no. 2, pp. 393–400, 2016.

J. Opt. Soc. Amer. A (1)

K. Su, L. Moeller, R. B. Barat, and J. F. Federici, “Experimental comparison of terahertz and infrared data signal attenuation in dust clouds,” J. Opt. Soc. Amer. A, vol. 29, no. 11, pp. 2360–2366, 2012.

Laser Photon. Rev. (1)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photon. Rev., vol. 3, no. 1–2, pp. 123–137, 2009.

Microw. Opt. Technol. Lett. (1)

C. Yang, X. Li, J. Xiao, N. Chi, and J. Yu, “Fiber-wireless integration for 80 Gbps polarization division multiplexing− 16QAM signal transmission at W-band without RF down conversion,” Microw. Opt. Technol. Lett., vol. 57, no. 1, pp. 9–13, 2015.

Nano Lett. (1)

Y. Salamin, “Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna,” Nano Lett., vol. 15, no. 12, pp. 8342–8346, 2015.

Nature Commun. (2)

Y. Salamin, “Compact and ultra-efficient broadband plasmonic terahertz field detector,” Nature Commun., vol. 10, no. 1, 2019, Art. no. .

W. Heni, “Plasmonic IQ modulators with attojoule per bit electrical energy consumption,” Nature Commun., vol. 10, no. 1, 2019, Art. no. .

Nature Photon. (6)

A. Melikyan, “High-speed plasmonic phase modulators,” Nature Photon., vol. 8, no. 3, pp. 229–233, 2014.

C. Haffner, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nature Photon., vol. 9, no. 8, 2015, Art. no. .

Y. Salamin, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nature Photon., vol. 12, no. 12, pp. 749–753, 2018.

S. Ummethala, “THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator,” Nature Photon., vol. 13, no. 8, pp. 519–524, 2019.

S. Koenig, “Wireless sub-THz communication system with high data rate,” Nature Photon., vol. 7, no. 12, 2013, Art. no. .

T. Harter, “Generalized Kramers–Kronig receiver for coherent terahertz communications,” Nature Photon., vol. 14, no. 10, pp. 601–606, 2020.

Opt. Exp. (3)

T. Nagatsuma, “Terahertz wireless communications based on photonics technologies,” Opt. Exp., vol. 21, no. 20, pp. 23736–23747, 2013.

W. Heni, “Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design,” Opt. Exp., vol. 25, no. 3, pp. 2627–2653, 2017.

A. Melikyan, “Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s,” Opt. Exp., vol. 23, no. 8, pp. 9938–9946, 2015.

Optica (1)

Proc. IEEE (1)

C. Haffner, “Plasmonic organic hybrid modulators—Scaling highest speed photonics to the microscale,” Proc. IEEE, vol. 104, no. 12, pp. 2362–2379, 2016.

URSI Radio Sci. Lett. (1)

J. Tebart, M. Steeg, F. Exner, A. Czylwik, and A. Stöhr, “Frequency-Scalable coherent radio-over-fiber architecture for 100 Gbit/s wireless transmission,” URSI Radio Sci. Lett., vol. 2, pp. 1–5, 2020.

Other (12)

T. P. McKenna, J. A. Nanzer, and T. R. Clark, “Photonic downconverting receiver using optical phase modulation,” in Proc. IEEE MTT-S Int. Microw. Symp., 2014, pp. 1–3.

P. T. Dat, “Transparent fiber–radio–fiber bridge at 101 GHz using optical modulator and direct photonic down-conversion,” in Proc. Opt. Fiber Commun. Conf. Exhibit., 2021, pp. 1–3.

Y. Salamin, “300 GHz plasmonic mixer,” in Proc. Int. Topical Meeting Microw. Photon., 2019, pp. 1–4.

Y. Horst, “Transparent optical-THz-optical link transmission over 5/115 m at 240/190 Gbit/s enabled by plasmonics,” in Proc. Opt. Fiber Commun. Conf. Exhibit., 2021, pp. 1–3.

R. Schmogrow, “Nyquist frequency division multiplexing for optical communications,” in Proc. CLEO: Sci. Innov., 2012, Paper .

C. Castro, R. Elschner, T. Merkle, C. Schubert, and R. Freund, “100 Gb/s real-time transmission over a THz wireless fiber extender using a digital-coherent optical modem,” in Proc. Opt. Fiber Commun. Conf., 2020, Paper .

A. Udalcovs, “107.1-Gbps net-rate transmission over a joint 51km-fibre-and-10.7 m-wireless link for terahertz radio access networks,” in Proc. 45th Eur. Conf. Opt. Commun., 2019, pp. 1–4.

X. Li, “132-Gb/s photonics-aided single-carrier wireless terahertz-wave signal transmission at 450GHz enabled by 64QAM modulation and probabilistic shaping,” in Proc. Opt. Fiber Commun. Conf. Exhibit., 2019, pp. 1–3.

X. Pang, “260 Gbit/s photonic-wireless link in the THz band,” in Proc. IEEE Photon. Conf., 2016, pp. 1–2.

X. Pang, “Single channel 106 Gbit/s 16QAM wireless transmission in the 0.4 THz band,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper .

T. Nagatsuma, “Real-time 100-Gbit/s QPSK transmission using photonics-based 300-GHz-band wireless link,” in Proc. IEEE Int. Topical Meeting Microw. Photon., 2016, pp. 27–30.

T. Nagatsuma, “Advances in terahertz communications accelerated by photonics technologies,” in Proc. 24th OptoElectron. Commun. Conf., 2019, pp. 1–3.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved