Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 17,
  • Issue 11,
  • pp. 1963-
  • (1999)

Block Copolymers as Photonic Bandgap Materials

Not Accessible

Your library or personal account may give you access


Block copolymers self-assemble into one-, two-, and three-dimensional periodic equilibrium structures, which can exhibit photonic bandgaps. This paper outlines a methodology for producing photonic crystals at optical length scales from block copolymers. Techniques for enhancing the intrinsic dielectric contrast between the block copolymer domains, as well as increasing the characteristic microdomain distances, and controlling defects are presented. To demonstrate the applicability of this methodology, a self-assembled one-dimensional periodic structure has been fabricated that reflects visible light. The wealth of structures into which block copolymers can assemble and the multiple degrees of freedom that can be built into these materials on the molecular level offer a large parameter space for tailoring new types of photonic crystals at optical length scales.


PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access Optica Member Subscription

Select as filters

Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved