Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 26,
  • Issue 3,
  • pp. 329-337
  • (2008)

Effects of Built-In Polarization and Carrier Overflow on InGaN Quantum-Well Lasers With Electronic Blocking Layers

Not Accessible

Your library or personal account may give you access

Abstract

Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with a ternary AlGaN or a quaternary AlInGaN electronic blocking layer (EBL) have been numerically investigated by employing an advanced device-simulation program. The simulation results indicate that the characteristics of InGaN quantum-well lasers can be improved by using the quaternary AlInGaN EBL. When the aluminum and indium compositions in the AlInGaN EBL are appropriately designed, the built-in charge density at the interface between the InGaN barrier and the AlInGaN EBL can be reduced. Under this circumstance, the electron leakage current and the laser threshold current can obviously be decreased as compared with the laser structure with a conventional AlGaN EBL when the built-in polarization is taken into account in the calculation. Furthermore, the AlInGaN EBL also gives a higher refractive index than the AlGaN EBL, which is a benefit for a higher quantum-well optical confinement factor in laser operations.

© 2008 IEEE

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved