Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 17,
  • Issue 11,
  • pp. 2013-
  • (1999)

Experimental Measurement of the Effect of Termination on Surface Electromagnetic Waves in One-Dimensional Photonic Bandgap Arrays

Not Accessible

Your library or personal account may give you access

Abstract

Two different attenuated total-internal reflection prism configurations are used to explore the excitation of surface electromagnetic waves on one-dimensional (1-D) photonic bandgap (PBG) arrays. The effect of surface termination of the photonic crystal is shown to have a significant effect on the dispersion of the surface modes excited at that interface. The results show that it is possible to engineer the position of the surface mode within the forbidden bandgap. Modes that are located close to the center of the bandgap are shown to be more localized, leading to significantly higher surface electromagnetic fields than modes located near the band edge. The existence of surface modes can have an effect on many of the proposed applications for PBG materials. The modes are also of interest in their own right for use in applications such as sensors and modulators.

[IEEE ]

PDF Article
More Like This
Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal

Emiliano Descrovi, Fabrizio Giorgis, Lorenzo Dominici, and Francesco Michelotti
Opt. Lett. 33(3) 243-245 (2008)

Experimental determination of a surface wave at the one-dimensional photonic crystal-metal interface

Aldo S. Ramírez-Duverger, Jorge Gaspar-Armenta, and Raúl García-Llamas
J. Opt. Soc. Am. B 25(6) 1016-1024 (2008)

One-dimensional photonic crystal for Bloch surface waves and radiation modes-based sensing

M. Gryga, D. Vala, P. Kolejak, L. Gembalova, D. Ciprian, and P. Hlubina
Opt. Mater. Express 9(10) 4009-4022 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved