Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 23,
  • Issue 11,
  • pp. 3558-
  • (2005)

PCF-Based Polarization Splitters With Simplified Structures

Not Accessible

Your library or personal account may give you access

Abstract

We propose novel polarization splitters based on photonic crystal fibers (PCFs), in which the cores of the splitters are nearly nonbirefringent. Different from conventional fiber-based polarization splitters, the birefringence in the new splitters results mainly from narrow silica regions physically connecting the two cores. This means that polarization splitting can be achieved without employing highly birefringent cores, which provides a possibility to greatly simplify the structures of the PCF-based polarization splitters and make them more practical. A 5-mm-long splitter with an extinction ratio of 20 dB has been obtained. We also discuss how the silica regions influence coupling characteristics of the dual-core PCFs and present a design guidance for the polarization splitters based on polarization-dependent coupling.

© 2005 IEEE

PDF Article
More Like This
Polarization splitter based on photonic crystal fibers

Lin Zhang and Changxi Yang
Opt. Express 11(9) 1015-1020 (2003)

Polarization splitter in three-core photonic crystal fibers

K. Saitoh, Y. Sato, and M. Koshiba
Opt. Express 12(17) 3940-3946 (2004)

Polarization splitter based on a square-lattice photonic-crystal fiber

Lorenzo Rosa, Federica Poli, Matteo Foroni, Annamaria Cucinotta, and Stefano Selleri
Opt. Lett. 31(4) 441-443 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.