Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 23,
  • Issue 8,
  • pp. 2568-
  • (2005)

Long-Period Fiber Grating Fabrication by High-Intensity Femtosecond Pulses at 211 nm

Not Accessible

Your library or personal account may give you access

Abstract

Using high-intensity (110-200 GW/cm2) 250-fs 211-nm laser pulses and a point-by-point technique, the efficiency of long-period grating inscription in H2-loaded standard telecom Corning SMF-28 and H2-free photosensitive B-codoped Fibercore fibers was studied and compared with those at other existing recording methods (low-intensity 157-nm, 193-nm, 248-nm or high-intensity 264-nm fabrications). It was shown that at high-intensity 211-nm laser inscription, two-quantum photoreactions are responsible for long-period fiber grating (LPFG) formation, which results in a significant photosensitivity enhancement in comparison with conventional low-intensity 248-nm exposure (by 45 times for SMF-28 fiber). It was found that the grating strength in the case of SMF-28 fiber, irradiated with high-intensity 211-nm pulses, reaches 28 dB, which is the highest value among all known photochemical approaches. The thermal studies of the recorded gratings were also conducted.

© 2005 IEEE

PDF Article
More Like This
Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication

Stephen A. Slattery, David N. Nikogosyan, and Gilberto Brambilla
J. Opt. Soc. Am. B 22(2) 354-361 (2005)

TPA-induced long-period gratings in a photonic crystal fiber: inscription and temperature sensing properties

Andrei A. Fotiadi, Gilberto Brambilla, Thomas Ernst, Stephen A. Slattery, and David N. Nikogosyan
J. Opt. Soc. Am. B 24(7) 1475-1481 (2007)

Strong long-period fiber gratings recorded at 352?nm

Mykhaylo Dubov, Ian Bennion, Stephen A. Slattery, and David N. Nikogosyan
Opt. Lett. 30(19) 2533-2535 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved