Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 3,
  • pp. 1247-
  • (2006)

Demonstration and Analysis of a 40-Gigasample/s Interferometric Analog-to-Digital Converter

Not Accessible

Your library or personal account may give you access

Abstract

A novel interferometric scheme for photonic analog-to-digital conversion is for the first time experimentally demonstrated at a real-time sample rate of 40 gigasamples/s. The scheme includes sampling as well as binary encoding, and the input signal in the experiment was a 1.25-GHz sinusoidal tone that was successfully digitized with a nominal resolution of 21 digital levels. Single-sample measurements yielded an effective number of bits (ENOB) of 2.6, which was limited by thermal detection noise while multisample averaged measurements resulted in an ENOB of 3.6 bits, mainly limited by phase drift. Apart from the experimental results, this paper covers an extensive theoretical analysis of the system, including calculations on the fundamental maximum bandwidth, the required optical power, the generated binary code, and its error robustness, as well as the impact of detection noise on the signal-to-noise ratio of the digitized signal. The major benefits of this interferometric scheme are that only one standard phase modulator is required and that the phase swing does not have to be larger than ±π to reach the full digital value space.

© 2006 IEEE

PDF Article
More Like This
Photonic analog-to-digital converters

George C. Valley
Opt. Express 15(5) 1955-1982 (2007)

Noise analysis of photonic digital-to-analog converters

Jiading Li, Xiaoxiao Xue, Shangyuan Li, and Xiaoping Zheng
Appl. Opt. 61(14) 4055-4062 (2022)

Photonic analog-to-digital converter using Mach-Zehnder modulators having identical half-wave voltages with improved bit resolution

Shuna Yang, Chao Wang, Hao Chi, Xianmin Zhang, Shilie Zheng, Xiaofeng Jin, and Jianping Yao
Appl. Opt. 48(22) 4458-4467 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.