Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 7,
  • pp. 2844-
  • (2006)

Minimum BER Criterion for Electrical Equalizer in Optical Communication Systems

Not Accessible

Your library or personal account may give you access

Abstract

The electrical equalizer (EE) for dispersion compensation is a key and cost-effective element in optical communication OOK systems in the presence of a chromatic dispersion The most common but suboptimal optimization criterion for the EE weights is based on minimizing the mean square error (mse). Here, the authors examine the optimal optimization criterion, minimum bit error rate (MBER) for a feedforward equalizer (FFE) weights in optical communication systems. A BER performance comparison analysis shows that the MBER optimization criterion introduces improvements over the conventional minimum mse optimization criterion. In addition, the authors introduce a new simplified method for computing the FFE weights using the concept of decision boundary.

© 2006 IEEE

PDF Article
More Like This
C-band 56-Gb/s PAM4 transmission over 80-km SSMF with electrical equalization at receiver

Xizi Tang, Shuangyue Liu, Zhongliang Sun, Han Cui, Xuekai Xu, Jia Qi, Mengqi Guo, Yueming Lu, and Yaojun Qiao
Opt. Express 27(18) 25708-25717 (2019)

C-band 120-Gb/s PAM-4 transmission over 50-km SSMF with improved weighted decision-feedback equalizer

Junwei Zhang, Xiong Wu, Lin Sun, Jie Liu, Alan Pak Tao Lau, Changjian Guo, Siyuan Yu, and Chao Lu
Opt. Express 29(25) 41622-41633 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.