Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 7,
  • pp. 2889-
  • (2006)

Pickup Suppression in Sagnac-Based Fiber-Optic Acoustic Sensor Array

Not Accessible

Your library or personal account may give you access

Abstract

Large-scale acoustic fiber sensor arrays consisting of hundreds of hydrophones distributed along kilometers-long fiber buses are required for applications such as undersea oil exploration. Sagnac-based sensor arrays (SSAs) exhibit attractive performance; however, the acoustic wave incident on the buses generates a pickup signal that can swamp the signals from the hydrophones. A simple technique for reducing this unwanted pickup is proposed, modeled, and demonstrated by periodically inserting deaf hydrophones in the buses instead of hydrophones so the pickup signal is measured at different locations along the buses. The first method directly subtracts the deaf hydrophone signal from the signal seen by the adjacent hydrophone (true signal and pickup) to recover the true hydrophone signal. This method is limited to small signal amplitudes by the nonlinearity of the Sagnac interferometer. The second method corrects the nonlinearity before pickup subtraction and allows in principle a full suppression of the pickup. When applied to an experimental two-rung SSA, this technique produced a -18.6-dB pickup suppression for pickup amplitudes as large as 0.44 rad and signal amplitudes of up to 0.44 rad and -15 dB for a signal as large as 0.88 rad. These values are limited by the accuracy of the 8-bit data acquisition and/or electronic noise. With a low-noise 12-bit data acquisition, the pickup suppression for small signal amplitudes is predicted to be -35 dB. This paper makes headway toward practical SSAs.

© 2006 IEEE

PDF Article
More Like This
Demonstration of a folded Sagnac sensor array immune to polarization-induced signal fading

Benjamin J. Vakoc, Michel J. F. Digonnet, and Gordon S. Kino
Appl. Opt. 42(36) 7132-7136 (2003)

Diaphragm-based optical fiber sensor array for multipoint acoustic detection

Jingyi Wang, Fan Ai, Qizhen Sun, Tao Liu, Hao Li, Zhijun Yan, and Deming Liu
Opt. Express 26(19) 25293-25304 (2018)

All-fiber-optic acoustic sensor array for real-time sound source localization

Jian Wang, Hongyan Wu, and Bo Jia
Appl. Opt. 56(12) 3347-3353 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved