Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 25,
  • Issue 8,
  • pp. 1978-1985
  • (2007)

A Quantized Delay Buffer Model for Single-Wavelength Fiber Delay Line Buffer

Not Accessible

Your library or personal account may give you access

Abstract

The fiber delay line (FDL) buffer is widely used in optical packet switching networks for contention solution. In this paper, a quantized delay buffer model is proposed to analyze the performance of the single-wavelength FDL buffer. Considering the delay quantization in the FDLs, the delay time and the waiting time of the packet are discussed. Without specific assumptions of the packet arrival process and length distribution, the model presents a generic approach to study the delay time distribution and modify the integral equation for the waiting time distribution. Analytic and exact results of the two aforementioned distributions can be obtained without any approximation. The accuracy of the model is validated through simulation.

© 2007 IEEE

PDF Article
More Like This
Exact Analysis of Single-Wavelength Optical Buffers With Feedback Markov Fluid Queues

Huseyin Emre Kankaya and Nail Akar
J. Opt. Commun. Netw. 1(6) 530-542 (2009)

Optimized design of delay-line buffers with an input-feedback mechanism for asynchronous optical packet switching networks

Shuna Yang, Norvald Stol, Hao Chi, and Qiliang Li
Appl. Opt. 55(31) 8705-8712 (2016)

Multiple-input single-output FIFO optical buffers with controllable fractional delay lines

G. Das, Rodney S. Tucker, C. Leckie, and K. Hinton
Opt. Express 16(26) 21849-21864 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved