Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 26,
  • Issue 13,
  • pp. 1765-1776
  • (2008)

Full-Duplex 1.0 Gbit/s Data Transmission Over 60 GHz Radio-on-Fiber Access System Based on the Loop-Back Optical Heterodyne Technique

Not Accessible

Your library or personal account may give you access

Abstract

Full-duplex transmission over a 60 GHz radio-on-fiber access system based on the optical heterodyne technique is verified in this paper. With this technique, an optical carrier generator on the transmitting side consolidates the functions of wavelength and polarization control for optical heterodyne detection in uplinks and optical millimeter-wave generation in downlinks, on behalf of each optical transmitter/receiver. Therefore, the whole system configuration can be significantly simplified. A full-duplex 1.0 Gbit/s transmission experiment over 10 km of single-mode fiber, which represents an access network transmission, is demonstrated using the simultaneous modulation/photodetection operation of an electroabsorption modulator (EAM). Bit error rates of less than 10<sup>-9</sup> were obtained in both the uplink and downlink without noticeable mutual interference, even though the laser source and the EAM is shared by both links, and no significant dispersion-induced degradation was observed. Moreover, the experimental results showed that an optical link budget of 9.2 dB can be achieved with the experimental configuration.

© 2008 IEEE

PDF Article
More Like This
Full-Duplex Radio Over Fiber With a Centralized Optical Source for a 60 GHz Millimeter-Wave System With a 10 Gb/s 16-QAM Downstream Signal Based on Frequency Quadrupling

Jianxin Ma, Yu Zhan, Min Zhou, Hao Liang, Yufeng Shao, and Chongxiu Yu
J. Opt. Commun. Netw. 4(7) 557-564 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.