Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 26,
  • Issue 17,
  • pp. 3190-3198
  • (2008)

Modeling of Modulation Formats for Interferometric Noise Mitigation

Not Accessible

Your library or personal account may give you access

Abstract

Interferometric noise in optical communication systems employing reflective modulation schemes can be mitigated by reshaping the data spectrum to reduce the spectral overlap with backscattered and backreflected light. A novel analytical model, capable of analyzing accurately the performance of modulation formats with a wide optical spectrum, is derived here and applied to study the case of interferometric noise caused by Rayleigh backscattering. Compared to more complex models and simulations the new method is fast, simple to implement, and gives clear insight into the physical phenomena involved. In addition, the performance of practical systems can be easily analyzed and optimized due to the capability of the model to include real component specifications such as arbitrary optical and electrical filter responses. The specific case of phase-modulated non-return to zero (PM-NRZ) modulation format is used to validate the model against experimental results and excellent agreement is obtained. The PM-NRZ performance is also investigated as a function of various parameters, quantifying, for example, the trade-off between phase modulation index and interferometric noise mitigation.

© 2008 IEEE

PDF Article
More Like This
Rayleigh noise mitigation in DWDM LR-PONs using carrier suppressed subcarrier-amplitude modulated phase shift keying

C. W. Chow, G. Talli, A. D. Ellis, and P. D. Townsend
Opt. Express 16(3) 1860-1866 (2008)

Bit rate transparent interferometric noise mitigation utilizing the nonlinear modulation curve of electro-absorption modulator

Hanlin Feng, Shilin Xiao, and Mable P. Fok
Opt. Express 23(17) 22572-22578 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.