Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 26,
  • Issue 20,
  • pp. 3468-3475
  • (2008)

Fiber-Optic Near-Field Chemical Sensors Based on Wavelength Scale Tin Dioxide Particle Layers

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, the surprising sensing performance of fiber-optic near-field chemical sensors, based on wavelength scale tin dioxide particle layers, against chemical pollutants in air environment at room temperature are reported. The layers were deposited upon the distal end of standard single-mode optical fibers by means of the very simple, versatile, and low-cost electrostatic spray pyrolysis technique. The morphologic and optical features of the deposited layers were characterized by means of a complex scanning probe system constituted by simultaneous atomic force microscope (AFM) and near-field scanning optical microscope (NSOM). Particle layers composed by tin dioxide grains, with wavelength and subwavelength dimensions, are very promising because they are able to significantly modify the optical near-field profile emerging from the film surface. As matter of fact, a local enhancement of the evanescent wave contribute occurs leading to a strong sensitivity to surface effects induced by the analyte interaction. Here, for the first time to our best knowledge, experimental results on the sensing capability of the proposed chemical probes in air environment are reported. Also, a preliminary study on the effects of the processing stage and the post processing thermal annealing on the film morphology and near-field behavior are presented.

© 2008 IEEE

PDF Article
More Like This
Near field behavior of SnO2 particle-layer deposited on standard optical fiber by electrostatic spray pyrolysis method

A. Cusano, P. Pilla, M. Consales, M. Pisco, A. Buosciolo, and M. Giordano
Opt. Express 15(8) 5136-5146 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved