Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 6,
  • pp. 706-717
  • (2009)

On the Error Probability Evaluation in Lightwave Systems With Optical Amplification

Not Accessible

Your library or personal account may give you access

Abstract

We review the time domain, frequency domain, and Fourier series Karhunen–Loéve series expansion (KLSE) methods for exact BER evaluation in intensity- and phase-modulated direct-detection optically amplified systems. We compare their complexity and computational efficiency, and discuss the most relevant implementation issues. We show that the method based on a Fourier series expansion has the simplest implementation and requires the minimum number of eigenvalues to converge to the exact BER value for various kind of optical filters. For this method, we also introduce an equivalent form of the moment generating function, that avoids the singularity for eigenvalues equal to zero, and derive an alternative expansion where signal and noise are expanded on the same orthonormal basis.

© 2009 IEEE

PDF Article
More Like This
Bit Error Probability Evaluation in Optically Preamplified Direct-Detection OFDM Systems Using the Moment Generating Function

João L. Rebola and Adolfo V. T. Cartaxo
J. Opt. Commun. Netw. 4(3) 229-237 (2012)

Modeling nonlinear phase noise in differentially phase-modulated optical communication systems

Leonardo D. Coelho, Lutz Molle, Dirk Gross, Norbert Hanik, Ronald Freund, Christoph Caspar, Ernst-Dieter Schmidt, and Bernhard Spinnler
Opt. Express 17(5) 3226-3241 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.