Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 16,
  • pp. 2726-2734
  • (2014)

High-Speed, Low Drive-Voltage Silicon-Organic Hybrid Modulator Based on a Binary-Chromophore Electro-Optic Material

Not Accessible

Your library or personal account may give you access

Abstract

We report on the hybrid integration of silicon-on-insulator slot waveguides with organic electro-optic materials. We investigate and compare a polymer composite, a dendron-based material, and a binary-chromophore organic glass (BCOG). A record-high in-device electro-optic coefficient of 230 pm/V is found for the BCOG approach resulting in silicon-organic hybrid Mach-Zehnder modulators that feature low $U_{\pi }L$ -products of down to 0.52 Vmm and support data rates of up to 40 Gbit/s.

© 2014 IEEE

PDF Article
More Like This
Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator

Clemens Kieninger, Yasar Kutuvantavida, Delwin L. Elder, Stefan Wolf, Heiner Zwickel, Matthias Blaicher, Juned N. Kemal, Matthias Lauermann, Sebastian Randel, Wolfgang Freude, Larry R. Dalton, and Christian Koos
Optica 5(6) 739-748 (2018)

Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design

Wolfgang Heni, Christian Haffner, Delwin L. Elder, Andreas F. Tillack, Yuriy Fedoryshyn, Raphael Cottier, Yannick Salamin, Claudia Hoessbacher, Ueli Koch, Bojun Cheng, Bruce Robinson, Larry R. Dalton, and Juerg Leuthold
Opt. Express 25(3) 2627-2653 (2017)

Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats

M. Lauermann, R. Palmer, S. Koeber, P. C. Schindler, D. Korn, T. Wahlbrink, J. Bolten, M. Waldow, D. L. Elder, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos
Opt. Express 22(24) 29927-29936 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.