Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 6,
  • pp. 1207-1212
  • (2014)

High-Bandwidth Density and Low-Power Optical MCM Using Waveguide-Integrated Organic Substrate

Not Accessible

Your library or personal account may give you access

Abstract

A high-bandwidth density and low-power optical multichip module (MCM) is developed and demonstrated. The module includes bare optical and driver chips and an application specific integrated circuit bonded on an optical waveguide-integrated organic carrier. Characterization results show that the optical I/O operates up to 20 Gb/s. The high-speed performance is not limited by the electrical characteristics of the carrier but by the optical chip bandwidth. The space between the VCSEL/PD surface and the waveguide is minimized to less than 5 μm by using an assembly technology with chip height control, which results in an average insertion loss of 2.7 dB. Alignment tolerances for a 0.5 dB insertion loss increase are ±5 and 7 μm for the transmitter, and ±6 and 7 μm for the receiver in the parallel and perpendicular directions respectively. This type of organic optical MCM promises to integrate high-bandwidth density and low-power optical I/Os with CMOS ICs on first level packages for next generation high performance computers and servers.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved