Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 10,
  • pp. 2012-2018
  • (2015)

Efficient Numerical Modeling of Photonic Crystal Heterostructure Devices

Not Accessible

Your library or personal account may give you access

Abstract

Photonic crystal (PhC) heterostructures combining segments of slightly different PhCs have been used to develop photonic devices, such as high-performance add/drop filters and microcavities with ultrahigh-quality factors. In this paper, we present a highly efficient computational method for simulating PhC heterostructure devices based on a two-dimensional (2-D) model. The method delivers high-accuracy results with ultrasmall-computational domains and an exponential convergence rate, and it takes full advantage of the existence of many identical unit cells and the circular shape of the air holes in typical slab-based PhC heterostructure devices. The 2-D model can capture many features of realistic PhC heterostructure devices fabricated on silicon slabs. Our method can be used to explore a large number of parameters in the design and optimization process.

© 2015 IEEE

PDF Article
More Like This
Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps

Zhen Hu and Ya Yan Lu
Opt. Express 16(22) 17383-17399 (2008)

Efficient numerical method for analyzing photonic crystal slab waveguides

Lijun Yuan and Ya Yan Lu
J. Opt. Soc. Am. B 28(9) 2265-2270 (2011)

Efficient numerical method for analyzing optical bistability in photonic crystal microcavities

Lijun Yuan and Ya Yan Lu
Opt. Express 21(10) 11952-11964 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.