Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 16,
  • pp. 3682-3695
  • (2016)

Chip-Scale Silicon Photonic Interconnects: A Formal Study on Fabrication Non-Uniformity

Open Access Open Access

Abstract

Silicon photonic interconnect (SPI) is an attractive alternative for the power-hungry and low-bandwidth metallic interconnect in multiprocessor systems-on-chip (MPSoCs). When employing SPIs for wavelength-division multiplexing (WDM)-based applications, it is essential to precisely align the central wavelengths of different photonic devices (e.g., photonic switches) to achieve a reliable communication. However, SPIs are sensitive to fabrication nonuniformity (a.k.a. fabrication process variation), which results in wavelength mismatches between devices, and hence performance degradation in SPIs. This work presents a computationally efficient and accurate bottom-up approach to study the impact of fabrication process variations on passive silicon photonic devices and interconnects. We first model the impact of process variations at the component level (i.e., strip waveguides), then at the device level (i.e., add-drop filters and photonic switches), and finally at the system level (i.e., passive WDM-based SPIs). Numerical simulations are performed not only to evaluate the accuracy of our method, but also to demonstrate its high-computational efficiency. Furthermore, our study includes the design, fabrication, and analysis of several identical microresonators to demonstrate process variations in silicon photonics fabrication. The efficiency of our proposed method enables its application to large-scale passive SPIs in MPSoCs, where employing time-consuming numerical simulations is not feasible.

© 2016 OAPA

PDF Article
More Like This
Scaling silicon photonic switch fabrics for data center interconnection networks

Dessislava Nikolova, Sébastien Rumley, David Calhoun, Qi Li, Robert Hendry, Payman Samadi, and Keren Bergman
Opt. Express 23(2) 1159-1175 (2015)

Photonic wire bonding: a novel concept for chip-scale interconnects

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos
Opt. Express 20(16) 17667-17677 (2012)

A scalable silicon photonic chip-scale optical switch for high performance computing systems

Runxiang Yu, Stanley Cheung, Yuliang Li, Katsunari Okamoto, Roberto Proietti, Yawei Yin, and S. J. B. Yoo
Opt. Express 21(26) 32655-32667 (2013)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved