Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 7,
  • pp. 1599-1609
  • (2016)

Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration

Not Accessible

Your library or personal account may give you access

Abstract

A transmission system with adjustable data rate for single-carrier coherent optical transmission is proposed, which enables high-speed transmission close to the Shannon limit. The proposed system is based on probabilistically shaped 64-QAM modulation formats. Adjustable shaping is combined with a fixed-QAM modulation and a fixed forward-error correction code to realize a system with adjustable net data rate that can operate over a large reach range. At the transmitter, an adjustable distribution matcher performs the shaping. At the receiver, an inverse distribution matcher is used. Probabilistic shaping is implemented into a coherent optical transmission system for 64-QAM at 32 Gbaud to realize adjustable operation modes for net data rates ranging from 200 to 300 Gb/s. It is experimentally demonstrated that the optical transmission of probabilistically shaped 64-QAM signals outperforms the transmission reach of regular 16-QAM and regular 64-QAM signals by more than 40% in the transmission reach.

© 2015 IEEE

PDF Article
More Like This
On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems

Junho Cho, Xi Chen, Sethumadhavan Chandrasekhar, and Peter Winzer
Opt. Express 26(8) 9784-9791 (2018)

Wide range rate adaptation of QAM-based probabilistic constellation shaping using a fixed FEC with blind adaptive equalization

Manabu Arikawa, Masaki Sato, and Kazunori Hayashi
Opt. Express 28(2) 1300-1315 (2020)

Experimental and numerical comparison of probabilistically shaped 4096 QAM and a uniformly shaped 1024 QAM in all-Raman amplified 160 km transmission

Seiji Okamoto, Masaki Terayama, Masato Yoshida, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 26(3) 3535-3543 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved