Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 8,
  • pp. 1963-1970
  • (2016)

Optimal BBU Placement for 5G C-RAN Deployment Over WDM Aggregation Networks

Not Accessible

Your library or personal account may give you access

Abstract

5G mobile access targets unprecedented performance, not only in terms of higher data rates per user and lower latency, but also in terms of network intelligence and capillarity. To achieve this, 5G networks will resort to solutions as small cell deployment, multipoint coordination (CoMP, ICIC) and centralized radio access network (C-RAN) with baseband units (BBUs) hotelling. As adopting such techniques requires a high-capacity low-latency access/aggregation network to support backhaul, radio coordination and fronthaul (i.e., digitized baseband signal) traffic, optical access/aggregation networks based on wavelength division multiplexing (WDM) are considered as an outstanding candidate for 5G-transport. By physically separating BBUs from the corresponding cell sites, BBU hotelling promises substantial savings in terms of cost and power consumption. However, this requires to insert additional high bit-rate traffic, i.e., the fronthaul, which also has very strict latency requirements. Therefore, a tradeoff between the number of BBU-hotels (BBU consolidation), the fronthaul latency and network-capacity utilization arises. We introduce the novel BBU-placement optimization problem for C-RAN deployment over a WDM aggregation network and formalize it by integer linear programming. Thus, we evaluate the impact of 1) jointly supporting converged fixed and mobile traffic, 2) different fronthaul-transport options (namely, OTN and Overlay) and 3) joint optimization of BBU and electronic switches placement, on the amount of BBU consolidation achievable on the aggregation network.

© 2015 IEEE

PDF Article
More Like This
Dynamic 5G RAN slice adjustment and migration based on traffic prediction in WDM metro-aggregation networks

Hao Yu, Francesco Musumeci, Jiawei Zhang, Massimo Tornatore, Lin Bai, and Yuefeng Ji
J. Opt. Commun. Netw. 12(12) 403-413 (2020)

Latency-Aware CU Placement/Handover in Dynamic WDM Access-Aggregation Networks

Francesco Musumeci, Omran Ayoub, Monica Magoni, and Massimo Tornatore
J. Opt. Commun. Netw. 11(4) B71-B82 (2019)

Experimental demonstration of fronthaul flexibility for enhanced CoMP service in 5G radio and optical access networks

Jiawei Zhang, Yuefeng Ji, Hao Yu, Xingang Huang, and Han Li
Opt. Express 25(18) 21247-21258 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.