Abstract
© 2017 CCBY
PDF Article© 2017 CCBY
PDF Article
R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059, 2016.
M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing,” Aerospace, vol. 3, no. 3, pp. 18-1–18-15, 2016.
T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626, 2016.
M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.
T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.
T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, no. 9, pp. 94011-1–94011-13, 2013.
R. Wanget al., “Highly sensitive curvature sensor using an in-fiber Mach-Zehnder interferometer,” IEEE Sensors J., vol. 13, no. 5, pp. 1766–1770, 2013.
R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126, 2013.
H. Bang, H. Kim, and K. Lee, “Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors,” Int. J. Precis. Eng. Manuf., vol. 13, no. 12, pp. 2121–2126, 2012.
K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995, 2012.
M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.
O. Frazãoet al., “All Fiber Mach-Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett., vol. 22, no. 17, pp. 1300–1302, 2010.
S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.
W. N. MacPhersonet al., “Tunnel monitoring using multicore fibre displacement sensor,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1180–1185, 2006.
T. Allsopet al., “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber [directional bend sensors],” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 130–135, 2004.
B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., vol. 9, no. 2, pp. 57–79, 2003.
P. M. Blanchardet al., “Two-dimensional bend sensing with a single, multi-core optical fiber,” Smart Mater. Struct., vol. 9, no. 2, pp. 132–140, 2000.
M. J. Ganderet al., “Two-axis bend measurement using multicore optical fiber,” Opt. Commun., vol. 182, no. 1, pp. 115–121, 2000.
M. J. Ganderet al., “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett., vol. 36, no. 2, pp. 120–121, 2000.
H. J. Patrick, C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett., vol. 34, no. 18, pp. 1773–1775, 1998.
K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276, 1997.
N. J. Frigo, A. D. Dandridge, and A. B. Tveten, “Technique for elimination of polarisation fading in fibre interferometers,” Electron. Lett., vol. 20, no. 8, pp. 319–320, 1984.
T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.
T. Allsopet al., “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber [directional bend sensors],” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 130–135, 2004.
S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.
H. Bang, H. Kim, and K. Lee, “Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors,” Int. J. Precis. Eng. Manuf., vol. 13, no. 12, pp. 2121–2126, 2012.
P. M. Blanchardet al., “Two-dimensional bend sensing with a single, multi-core optical fiber,” Smart Mater. Struct., vol. 9, no. 2, pp. 132–140, 2000.
H. J. Patrick, C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett., vol. 34, no. 18, pp. 1773–1775, 1998.
T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626, 2016.
T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.
T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, no. 9, pp. 94011-1–94011-13, 2013.
T. Kissinger, E. Chehura, S. W. James, and R. P. Tatam, “Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements,” in Proc. 25th Opt. Fiber Sensors Conf., Jeju, South Korea, 2017, pp. 1–4.
B. A. Childerset al., “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” in Proc. Smart Structures Mater., Newport Beach, CA, USA, vol. 4332, pp. 133–142, 2001.
T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626, 2016.
N. J. Frigo, A. D. Dandridge, and A. B. Tveten, “Technique for elimination of polarisation fading in fibre interferometers,” Electron. Lett., vol. 20, no. 8, pp. 319–320, 1984.
M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.
R. G. Duncanet al., “High-accuracy fiber-optic shape sensing,” Proc. SPIE, Sensor Syst. Netw., vol. 6530, pp. 65301S-1–65301S-11, 2007.
O. Frazãoet al., “All Fiber Mach-Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett., vol. 22, no. 17, pp. 1300–1302, 2010.
N. J. Frigo, A. D. Dandridge, and A. B. Tveten, “Technique for elimination of polarisation fading in fibre interferometers,” Electron. Lett., vol. 20, no. 8, pp. 319–320, 1984.
M. J. Ganderet al., “Two-axis bend measurement using multicore optical fiber,” Opt. Commun., vol. 182, no. 1, pp. 115–121, 2000.
M. J. Ganderet al., “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett., vol. 36, no. 2, pp. 120–121, 2000.
J. M. Gere and B. Goodno, Mechanics of Materials, 9th ed. Boston, MA, USA: Cengage Learning, 2016.
J. M. Gere and B. Goodno, Mechanics of Materials, 9th ed. Boston, MA, USA: Cengage Learning, 2016.
S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.
K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276, 1997.
M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.
M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.
T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626, 2016.
T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.
T. Kissinger, E. Chehura, S. W. James, and R. P. Tatam, “Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements,” in Proc. 25th Opt. Fiber Sensors Conf., Jeju, South Korea, 2017, pp. 1–4.
J. Roths and F. Jülich, “Determination of strain sensitivity of free fiber Bragg gratings,” in Proc. Opt. Sensors Conf., Strasbourg, France, vol. 7003, pp. 700308-1–700308-8, 2008.
S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.
M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.
R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126, 2013.
H. Bang, H. Kim, and K. Lee, “Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors,” Int. J. Precis. Eng. Manuf., vol. 13, no. 12, pp. 2121–2126, 2012.
T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626, 2016.
T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.
T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, no. 9, pp. 94011-1–94011-13, 2013.
T. Kissinger, E. Chehura, S. W. James, and R. P. Tatam, “Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements,” in Proc. 25th Opt. Fiber Sensors Conf., Jeju, South Korea, 2017, pp. 1–4.
B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., vol. 9, no. 2, pp. 57–79, 2003.
H. Bang, H. Kim, and K. Lee, “Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors,” Int. J. Precis. Eng. Manuf., vol. 13, no. 12, pp. 2121–2126, 2012.
W. N. MacPhersonet al., “Tunnel monitoring using multicore fibre displacement sensor,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1180–1185, 2006.
K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995, 2012.
K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276, 1997.
R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126, 2013.
K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995, 2012.
S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.
M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing,” Aerospace, vol. 3, no. 3, pp. 18-1–18-15, 2016.
R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059, 2016.
H. J. Patrick, C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett., vol. 34, no. 18, pp. 1773–1775, 1998.
M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.
S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.
M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing,” Aerospace, vol. 3, no. 3, pp. 18-1–18-15, 2016.
M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.
R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126, 2013.
S. J. Rothberget al., “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Laser Eng., to be published. doi: .
[Crossref]
J. Roths and F. Jülich, “Determination of strain sensitivity of free fiber Bragg gratings,” in Proc. Opt. Sensors Conf., Strasbourg, France, vol. 7003, pp. 700308-1–700308-8, 2008.
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.
Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Proc. Adv. Photon. Congr., Vancouver, Canada, 2016, pp. SeM4D.4-1–SeM4D.4-3.
M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing,” Aerospace, vol. 3, no. 3, pp. 18-1–18-15, 2016.
M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.
Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Proc. Adv. Photon. Congr., Vancouver, Canada, 2016, pp. SeM4D.4-1–SeM4D.4-3.
T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626, 2016.
T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.
T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, no. 9, pp. 94011-1–94011-13, 2013.
T. Kissinger, E. Chehura, S. W. James, and R. P. Tatam, “Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements,” in Proc. 25th Opt. Fiber Sensors Conf., Jeju, South Korea, 2017, pp. 1–4.
Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Proc. Adv. Photon. Congr., Vancouver, Canada, 2016, pp. SeM4D.4-1–SeM4D.4-3.
N. J. Frigo, A. D. Dandridge, and A. B. Tveten, “Technique for elimination of polarisation fading in fibre interferometers,” Electron. Lett., vol. 20, no. 8, pp. 319–320, 1984.
T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.
R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126, 2013.
H. J. Patrick, C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett., vol. 34, no. 18, pp. 1773–1775, 1998.
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.
R. Wanget al., “Highly sensitive curvature sensor using an in-fiber Mach-Zehnder interferometer,” IEEE Sensors J., vol. 13, no. 5, pp. 1766–1770, 2013.
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.
K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995, 2012.
R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059, 2016.
K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995, 2012.
R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059, 2016.
Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Proc. Adv. Photon. Congr., Vancouver, Canada, 2016, pp. SeM4D.4-1–SeM4D.4-3.
M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.
M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.
M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing,” Aerospace, vol. 3, no. 3, pp. 18-1–18-15, 2016.
N. J. Frigo, A. D. Dandridge, and A. B. Tveten, “Technique for elimination of polarisation fading in fibre interferometers,” Electron. Lett., vol. 20, no. 8, pp. 319–320, 1984.
H. J. Patrick, C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett., vol. 34, no. 18, pp. 1773–1775, 1998.
M. J. Ganderet al., “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett., vol. 36, no. 2, pp. 120–121, 2000.
O. Frazãoet al., “All Fiber Mach-Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett., vol. 22, no. 17, pp. 1300–1302, 2010.
Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624, 2007.
R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059, 2016.
K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995, 2012.
R. Wanget al., “Highly sensitive curvature sensor using an in-fiber Mach-Zehnder interferometer,” IEEE Sensors J., vol. 13, no. 5, pp. 1766–1770, 2013.
T. Allsopet al., “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber [directional bend sensors],” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 130–135, 2004.
R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126, 2013.
H. Bang, H. Kim, and K. Lee, “Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors,” Int. J. Precis. Eng. Manuf., vol. 13, no. 12, pp. 2121–2126, 2012.
K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276, 1997.
T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626, 2016.
T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, no. 9, pp. 94011-1–94011-13, 2013.
W. N. MacPhersonet al., “Tunnel monitoring using multicore fibre displacement sensor,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1180–1185, 2006.
M. J. Ganderet al., “Two-axis bend measurement using multicore optical fiber,” Opt. Commun., vol. 182, no. 1, pp. 115–121, 2000.
M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.
B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., vol. 9, no. 2, pp. 57–79, 2003.
S. J. Rothberget al., “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Laser Eng., to be published. doi: .
[Crossref]
P. M. Blanchardet al., “Two-dimensional bend sensing with a single, multi-core optical fiber,” Smart Mater. Struct., vol. 9, no. 2, pp. 132–140, 2000.
S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.
T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.
J. Roths and F. Jülich, “Determination of strain sensitivity of free fiber Bragg gratings,” in Proc. Opt. Sensors Conf., Strasbourg, France, vol. 7003, pp. 700308-1–700308-8, 2008.
B. A. Childerset al., “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” in Proc. Smart Structures Mater., Newport Beach, CA, USA, vol. 4332, pp. 133–142, 2001.
J. M. Gere and B. Goodno, Mechanics of Materials, 9th ed. Boston, MA, USA: Cengage Learning, 2016.
R. G. Duncanet al., “High-accuracy fiber-optic shape sensing,” Proc. SPIE, Sensor Syst. Netw., vol. 6530, pp. 65301S-1–65301S-11, 2007.
Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Proc. Adv. Photon. Congr., Vancouver, Canada, 2016, pp. SeM4D.4-1–SeM4D.4-3.
T. Kissinger, E. Chehura, S. W. James, and R. P. Tatam, “Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements,” in Proc. 25th Opt. Fiber Sensors Conf., Jeju, South Korea, 2017, pp. 1–4.
Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.