Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 4,
  • pp. 917-925
  • (2018)

Dynamic Fiber-Optic Shape Sensing Using Fiber Segment Interferometry

Open Access Open Access

Abstract

Dynamic fiber-optic shape sensing, often also referred to as curvature or bend sensing, is demonstrated using fiber segment interferometry, where chains of fiber segments, separated by broadband Bragg grating reflectors, are interrogated using range-resolved interferometry. In this paper, the theory of interferometric curvature sensing using fiber segments is developed in detail, including techniques to infer lateral displacements from the measured differential strain data and methods for directional calibration of the sensor. A proof-of-concept experiment is performed, where four fiber strings, each containing four fiber segments of gauge length 20 cm each, are attached to the opposing sides of a flexible support structure and the resulting differential strain measurements are used to determine the lateral displacements of a 0.8 m cantilever test object in two dimensions. Dynamic tip displacement measurements at $ \mathbf{40}\;\mathbf{nm}\cdot \mathbf{Hz}^{-0.5}$ noise levels over a 21 kHz bandwidth demonstrate the suitability of this approach for highly sensitive and cost-effective fiber-optic lateral displacement or vibration measurements.

© 2017 CCBY

PDF Article

References

  • View by:

  1. H. J. Patrick, C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett., vol. 34, no. 18, pp. 1773–1775, 1998.
  2. C. C. Ye, S. W. James, and R. P. Tatam, “Simultaneous temperature and bend sensing with long-period fiber gratings,” Opt. Lett., vol. 25, no. 14, pp. 1007–1009, 2000.
  3. P. M. Blanchardet al., “Two-dimensional bend sensing with a single, multi-core optical fiber,” Smart Mater. Struct., vol. 9, no. 2, pp. 132–140, 2000.
  4. M. J. Ganderet al., “Two-axis bend measurement using multicore optical fiber,” Opt. Commun., vol. 182, no. 1, pp. 115–121, 2000.
  5. M. J. Ganderet al., “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett., vol. 36, no. 2, pp. 120–121, 2000.
  6. G. M. H. Flockhart, W. N. Macpherson, J. S. Barton, and J. D. C. Jones, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett., vol. 28, no. 6, pp. 387–389, 2003.
  7. T. Allsopet al., “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber [directional bend sensors],” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 130–135,  2004.
  8. W. N. MacPhersonet al., “Tunnel monitoring using multicore fibre displacement sensor,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1180–1185, 2006.
  9. R. G. Duncanet al., “High-accuracy fiber-optic shape sensing,” Proc. SPIE, Sensor Syst. Netw., vol. 6530, pp. 65301S-1–65301S-11, 2007.
  10. S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.
  11. O. Frazãoet al., “All Fiber Mach-Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett., vol. 22, no. 17, pp. 1300–1302,  2010.
  12. M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.
  13. H. Bang, H. Kim, and K. Lee, “Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors,” Int. J. Precis. Eng. Manuf., vol. 13, no. 12, pp. 2121–2126, 2012.
  14. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express, vol. 20, no. 3, pp. 2967–2973, 2012.
  15. R. Wanget al., “Highly sensitive curvature sensor using an in-fiber Mach-Zehnder interferometer,” IEEE Sensors J., vol. 13, no. 5, pp. 1766–1770,  2013.
  16. R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126,  2013.
  17. R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059,  2016.
  18. M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing,” Aerospace, vol. 3, no. 3, pp. 18-1–18-15, 2016.
  19. Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Proc. Adv. Photon. Congr., Vancouver, Canada, 2016, pp. SeM4D.4-1–SeM4D.4-3.
  20. T. Kissinger, E. Chehura, S. W. James, and R. P. Tatam, “Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements,” in Proc. 25th Opt. Fiber Sensors Conf., Jeju, South Korea, 2017, pp. 1–4.
  21. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276,  1997.
  22. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., vol. 9, no. 2, pp. 57–79, 2003.
  23. B. A. Childerset al., “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” in Proc. Smart Structures Mater., Newport Beach, CA, USA, vol. 4332, pp. 133–142, 2001.
  24. K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995,  2012.
  25. S. J. Rothberget al., “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Laser Eng., to be published. doi: .
    [Crossref]
  26. T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626,  2016.
  27. T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Range-resolved interferometric signal processing using sinusoidal optical frequency modulation,” Opt. Express, vol. 23, no. 7, pp. 9415–9431, 2015.
  28. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt., vol. 12, no. 9, pp. 2071–2074, 1973.
  29. C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt., vol. 17, no. 18, pp. 2867–2869, 1978.
  30. T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, no. 9, pp. 94011-1–94011-13, 2013.
  31. J. M. Gere and B. Goodno, Mechanics of Materials, 9th ed. Boston, MA, USA: Cengage Learning, 2016.
  32. M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.
  33. Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624,  2007.
  34. J. Roths and F. Jülich, “Determination of strain sensitivity of free fiber Bragg gratings,” in Proc. Opt. Sensors Conf., Strasbourg, France, vol. 7003, pp. 700308-1–700308-8, 2008.
  35. T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.
  36. N. J. Frigo, A. D. Dandridge, and A. B. Tveten, “Technique for elimination of polarisation fading in fibre interferometers,” Electron. Lett., vol. 20, no. 8, pp. 319–320, 1984.

2016 (3)

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059,  2016.

M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing,” Aerospace, vol. 3, no. 3, pp. 18-1–18-15, 2016.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626,  2016.

2015 (3)

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Range-resolved interferometric signal processing using sinusoidal optical frequency modulation,” Opt. Express, vol. 23, no. 7, pp. 9415–9431, 2015.

M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.

T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.

2013 (3)

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, no. 9, pp. 94011-1–94011-13, 2013.

R. Wanget al., “Highly sensitive curvature sensor using an in-fiber Mach-Zehnder interferometer,” IEEE Sensors J., vol. 13, no. 5, pp. 1766–1770,  2013.

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126,  2013.

2012 (3)

H. Bang, H. Kim, and K. Lee, “Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors,” Int. J. Precis. Eng. Manuf., vol. 13, no. 12, pp. 2121–2126, 2012.

J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express, vol. 20, no. 3, pp. 2967–2973, 2012.

K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995,  2012.

2011 (1)

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.

2010 (1)

O. Frazãoet al., “All Fiber Mach-Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett., vol. 22, no. 17, pp. 1300–1302,  2010.

2009 (1)

S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.

2007 (1)

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624,  2007.

2006 (1)

W. N. MacPhersonet al., “Tunnel monitoring using multicore fibre displacement sensor,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1180–1185, 2006.

2004 (1)

T. Allsopet al., “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber [directional bend sensors],” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 130–135,  2004.

2003 (2)

2000 (4)

C. C. Ye, S. W. James, and R. P. Tatam, “Simultaneous temperature and bend sensing with long-period fiber gratings,” Opt. Lett., vol. 25, no. 14, pp. 1007–1009, 2000.

P. M. Blanchardet al., “Two-dimensional bend sensing with a single, multi-core optical fiber,” Smart Mater. Struct., vol. 9, no. 2, pp. 132–140, 2000.

M. J. Ganderet al., “Two-axis bend measurement using multicore optical fiber,” Opt. Commun., vol. 182, no. 1, pp. 115–121, 2000.

M. J. Ganderet al., “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett., vol. 36, no. 2, pp. 120–121, 2000.

1998 (1)

H. J. Patrick, C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett., vol. 34, no. 18, pp. 1773–1775, 1998.

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276,  1997.

1984 (1)

N. J. Frigo, A. D. Dandridge, and A. B. Tveten, “Technique for elimination of polarisation fading in fibre interferometers,” Electron. Lett., vol. 20, no. 8, pp. 319–320, 1984.

1978 (1)

1973 (1)

Adams, A.

T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.

Allsop, T.

T. Allsopet al., “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber [directional bend sensors],” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 130–135,  2004.

Baier, H.

S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.

Bang, H.

H. Bang, H. Kim, and K. Lee, “Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors,” Int. J. Precis. Eng. Manuf., vol. 13, no. 12, pp. 2121–2126, 2012.

Barton, J. S.

Blanchard, P. M.

P. M. Blanchardet al., “Two-dimensional bend sensing with a single, multi-core optical fiber,” Smart Mater. Struct., vol. 9, no. 2, pp. 132–140, 2000.

Butter, C. D.

Chang, C.

H. J. Patrick, C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett., vol. 34, no. 18, pp. 1773–1775, 1998.

Charrett, T. O. H.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626,  2016.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Range-resolved interferometric signal processing using sinusoidal optical frequency modulation,” Opt. Express, vol. 23, no. 7, pp. 9415–9431, 2015.

T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, no. 9, pp. 94011-1–94011-13, 2013.

Chehura, E.

T. Kissinger, E. Chehura, S. W. James, and R. P. Tatam, “Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements,” in Proc. 25th Opt. Fiber Sensors Conf., Jeju, South Korea, 2017, pp. 1–4.

Childers, B. A.

B. A. Childerset al., “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” in Proc. Smart Structures Mater., Newport Beach, CA, USA, vol. 4332, pp. 133–142, 2001.

Correia, R.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626,  2016.

Dandridge, A. D.

N. J. Frigo, A. D. Dandridge, and A. B. Tveten, “Technique for elimination of polarisation fading in fibre interferometers,” Electron. Lett., vol. 20, no. 8, pp. 319–320, 1984.

Deng, M.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.

Duncan, R. G.

R. G. Duncanet al., “High-accuracy fiber-optic shape sensing,” Proc. SPIE, Sensor Syst. Netw., vol. 6530, pp. 65301S-1–65301S-11, 2007.

Flockhart, G. M. H.

Frazão, O.

O. Frazãoet al., “All Fiber Mach-Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett., vol. 22, no. 17, pp. 1300–1302,  2010.

Frigo, N. J.

N. J. Frigo, A. D. Dandridge, and A. B. Tveten, “Technique for elimination of polarisation fading in fibre interferometers,” Electron. Lett., vol. 20, no. 8, pp. 319–320, 1984.

Gander, M. J.

M. J. Ganderet al., “Two-axis bend measurement using multicore optical fiber,” Opt. Commun., vol. 182, no. 1, pp. 115–121, 2000.

M. J. Ganderet al., “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett., vol. 36, no. 2, pp. 120–121, 2000.

Gere, J. M.

J. M. Gere and B. Goodno, Mechanics of Materials, 9th ed. Boston, MA, USA: Cengage Learning, 2016.

Goodno, B.

J. M. Gere and B. Goodno, Mechanics of Materials, 9th ed. Boston, MA, USA: Cengage Learning, 2016.

Han, J. H.

S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276,  1997.

Hocker, G. B.

Hogains, M.

M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.

Jacobsen, M.

M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.

James, S. W.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626,  2016.

T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.

C. C. Ye, S. W. James, and R. P. Tatam, “Simultaneous temperature and bend sensing with long-period fiber gratings,” Opt. Lett., vol. 25, no. 14, pp. 1007–1009, 2000.

T. Kissinger, E. Chehura, S. W. James, and R. P. Tatam, “Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements,” in Proc. 25th Opt. Fiber Sensors Conf., Jeju, South Korea, 2017, pp. 1–4.

Jones, J. D. C.

Jülich, F.

J. Roths and F. Jülich, “Determination of strain sensitivity of free fiber Bragg gratings,” in Proc. Opt. Sensors Conf., Strasbourg, France, vol. 7003, pp. 700308-1–700308-8, 2008.

Kang, L. H.

S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.

Kastner, R.

M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.

Kemp, M.

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126,  2013.

Kim, H.

H. Bang, H. Kim, and K. Lee, “Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors,” Int. J. Precis. Eng. Manuf., vol. 13, no. 12, pp. 2121–2126, 2012.

Kissinger, T.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626,  2016.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Range-resolved interferometric signal processing using sinusoidal optical frequency modulation,” Opt. Express, vol. 23, no. 7, pp. 9415–9431, 2015.

T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, no. 9, pp. 94011-1–94011-13, 2013.

T. Kissinger, E. Chehura, S. W. James, and R. P. Tatam, “Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements,” in Proc. 25th Opt. Fiber Sensors Conf., Jeju, South Korea, 2017, pp. 1–4.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., vol. 9, no. 2, pp. 57–79, 2003.

Lee, K.

H. Bang, H. Kim, and K. Lee, “Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors,” Int. J. Precis. Eng. Manuf., vol. 13, no. 12, pp. 2121–2126, 2012.

MacPherson, W. N.

W. N. MacPhersonet al., “Tunnel monitoring using multicore fibre displacement sensor,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1180–1185, 2006.

G. M. H. Flockhart, W. N. Macpherson, J. S. Barton, and J. D. C. Jones, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett., vol. 28, no. 6, pp. 387–389, 2003.

Mégret, P.

K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995,  2012.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276,  1997.

Misra, S.

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126,  2013.

Moeyaert, V.

K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995,  2012.

Moore, J. P.

Mueller, U. C.

S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.

Nicolas, M. J.

M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing,” Aerospace, vol. 3, no. 3, pp. 18-1–18-15, 2016.

Patel, R. V.

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059,  2016.

Patrick, H. J.

H. J. Patrick, C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett., vol. 34, no. 18, pp. 1773–1775, 1998.

Polhemus, C.

Rao, Y. J.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.

Rapp, S.

S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.

Richards, W. L.

M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing,” Aerospace, vol. 3, no. 3, pp. 18-1–18-15, 2016.

Richmond, D.

M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.

Roesthuis, R. J.

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126,  2013.

Rogge, M. D.

Rothberg, S. J.

S. J. Rothberget al., “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Laser Eng., to be published. doi: .
[Crossref]

Roths, J.

J. Roths and F. Jülich, “Determination of strain sensitivity of free fiber Bragg gratings,” in Proc. Opt. Sensors Conf., Strasbourg, France, vol. 7003, pp. 700308-1–700308-8, 2008.

Shen, F.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624,  2007.

Song, L.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624,  2007.

Soto, M. A.

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Proc. Adv. Photon. Congr., Vancouver, Canada, 2016, pp. SeM4D.4-1–SeM4D.4-3.

Sullivan, R. W.

M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing,” Aerospace, vol. 3, no. 3, pp. 18-1–18-15, 2016.

Tang, C. P.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.

Tang, M.

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Proc. Adv. Photon. Congr., Vancouver, Canada, 2016, pp. SeM4D.4-1–SeM4D.4-3.

Tatam, R. P.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626,  2016.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Range-resolved interferometric signal processing using sinusoidal optical frequency modulation,” Opt. Express, vol. 23, no. 7, pp. 9415–9431, 2015.

T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, no. 9, pp. 94011-1–94011-13, 2013.

C. C. Ye, S. W. James, and R. P. Tatam, “Simultaneous temperature and bend sensing with long-period fiber gratings,” Opt. Lett., vol. 25, no. 14, pp. 1007–1009, 2000.

T. Kissinger, E. Chehura, S. W. James, and R. P. Tatam, “Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements,” in Proc. 25th Opt. Fiber Sensors Conf., Jeju, South Korea, 2017, pp. 1–4.

Thévenaz, L.

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Proc. Adv. Photon. Congr., Vancouver, Canada, 2016, pp. SeM4D.4-1–SeM4D.4-3.

Tveten, A. B.

N. J. Frigo, A. D. Dandridge, and A. B. Tveten, “Technique for elimination of polarisation fading in fibre interferometers,” Electron. Lett., vol. 20, no. 8, pp. 319–320, 1984.

Twin, A.

T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.

van den Dobbelsteen, J. J.

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126,  2013.

Vohra, S. T.

H. J. Patrick, C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett., vol. 34, no. 18, pp. 1773–1775, 1998.

Wang, A.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624,  2007.

Wang, R.

R. Wanget al., “Highly sensitive curvature sensor using an in-fiber Mach-Zehnder interferometer,” IEEE Sensors J., vol. 13, no. 5, pp. 1766–1770,  2013.

Wang, X.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624,  2007.

Wang, Z.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624,  2007.

Wuilpart, M.

K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995,  2012.

Xu, R.

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059,  2016.

Ye, C. C.

Yüksel, K.

K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995,  2012.

Yurkewich, A.

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059,  2016.

Zhao, Z.

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Proc. Adv. Photon. Congr., Vancouver, Canada, 2016, pp. SeM4D.4-1–SeM4D.4-3.

Zhu, T.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.

ACM Trans. Reconfigurable Technol. (1)

M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable integration framework for FPGA accelerators,” ACM Trans. Reconfigurable Technol., vol. 8, no. 4, pp. 22-1–22-23, 2015.

Aerospace (1)

M. J. Nicolas, R. W. Sullivan, and W. L. Richards, “Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing,” Aerospace, vol. 3, no. 3, pp. 18-1–18-15, 2016.

Appl. Opt. (2)

Electron. Lett. (3)

N. J. Frigo, A. D. Dandridge, and A. B. Tveten, “Technique for elimination of polarisation fading in fibre interferometers,” Electron. Lett., vol. 20, no. 8, pp. 319–320, 1984.

H. J. Patrick, C. Chang, and S. T. Vohra, “Long period fibre gratings for structural bend sensing,” Electron. Lett., vol. 34, no. 18, pp. 1773–1775, 1998.

M. J. Ganderet al., “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett., vol. 36, no. 2, pp. 120–121, 2000.

IEEE Photon. Technol. Lett. (2)

O. Frazãoet al., “All Fiber Mach-Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett., vol. 22, no. 17, pp. 1300–1302,  2010.

Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Perot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 622–624,  2007.

IEEE Robot. Autom. Lett. (1)

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 1052–1059,  2016.

IEEE Sensors J. (2)

K. Yüksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J., vol. 12, no. 5, pp. 988–995,  2012.

R. Wanget al., “Highly sensitive curvature sensor using an in-fiber Mach-Zehnder interferometer,” IEEE Sensors J., vol. 13, no. 5, pp. 1766–1770,  2013.

IEEE Trans. Instrum. Meas. (1)

T. Allsopet al., “Bending and orientational characteristics of long period gratings written in D-shaped optical fiber [directional bend sensors],” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 130–135,  2004.

IEEE/ASME Trans. Mechatronics (1)

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 4, pp. 1115–1126,  2013.

Int. J. Precis. Eng. Manuf. (1)

H. Bang, H. Kim, and K. Lee, “Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors,” Int. J. Precis. Eng. Manuf., vol. 13, no. 12, pp. 2121–2126, 2012.

J. Lightw. Technol. (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276,  1997.

T. Kissinger, R. Correia, T. O. H. Charrett, S. W. James, and R. P. Tatam, “Fiber segment interferometry for dynamic strain measurements,” J. Lightw. Technol., vol. 34, no. 19, pp. 4620–4626,  2016.

Meas. Sci. Technol. (2)

T. Kissinger, T. O. H. Charrett, and R. P. Tatam, “Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications,” Meas. Sci. Technol., vol. 24, no. 9, pp. 94011-1–94011-13, 2013.

W. N. MacPhersonet al., “Tunnel monitoring using multicore fibre displacement sensor,” Meas. Sci. Technol., vol. 17, no. 5, pp. 1180–1185, 2006.

Opt. Commun. (2)

M. J. Ganderet al., “Two-axis bend measurement using multicore optical fiber,” Opt. Commun., vol. 182, no. 1, pp. 115–121, 2000.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun., vol. 284, no. 12, pp. 2849–2853, 2011.

Opt. Express (2)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., vol. 9, no. 2, pp. 57–79, 2003.

Opt. Laser Eng. (1)

S. J. Rothberget al., “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Opt. Laser Eng., to be published. doi: .
[Crossref]

Opt. Lett. (2)

Smart Mater. Struct. (2)

P. M. Blanchardet al., “Two-dimensional bend sensing with a single, multi-core optical fiber,” Smart Mater. Struct., vol. 9, no. 2, pp. 132–140, 2000.

S. Rapp, L. H. Kang, J. H. Han, U. C. Mueller, and H. Baier, “Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors,” Smart Mater. Struct., vol. 18, no. 2, pp. 25006-1–25006-12, 2009.

SPIE Opt. Metrol. (1)

T. Kissinger, T. O. H. Charrett, S. W. James, A. Adams, A. Twin, and R. P. Tatam, “Simultaneous laser vibrometry on multiple surfaces with a single beam system using range-resolved interferometry,” SPIE Opt. Metrol., Munich, Germany, vol. 9525, pp. 952520-1–952520-7, 2015.

Other (6)

J. Roths and F. Jülich, “Determination of strain sensitivity of free fiber Bragg gratings,” in Proc. Opt. Sensors Conf., Strasbourg, France, vol. 7003, pp. 700308-1–700308-8, 2008.

B. A. Childerset al., “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” in Proc. Smart Structures Mater., Newport Beach, CA, USA, vol. 4332, pp. 133–142, 2001.

J. M. Gere and B. Goodno, Mechanics of Materials, 9th ed. Boston, MA, USA: Cengage Learning, 2016.

R. G. Duncanet al., “High-accuracy fiber-optic shape sensing,” Proc. SPIE, Sensor Syst. Netw., vol. 6530, pp. 65301S-1–65301S-11, 2007.

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers,” in Proc. Adv. Photon. Congr., Vancouver, Canada, 2016, pp. SeM4D.4-1–SeM4D.4-3.

T. Kissinger, E. Chehura, S. W. James, and R. P. Tatam, “Multiplexing curvature sensors using fibre segment interferometry for lateral vibration measurements,” in Proc. 25th Opt. Fiber Sensors Conf., Jeju, South Korea, 2017, pp. 1–4.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved