Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 1,
  • pp. 103-109
  • (2019)

Coherent ePIC Receiver for 64 GBaud QPSK in 0.25 μm Photonic BiCMOS Technology

Open Access Open Access

Abstract

In this paper, we present a monolithically integrated coherent receiver with on-chip grating couplers, 90° hybrid, photodiodes and transimpedance amplifiers. A transimpedance gain of 7.7 kΩ was achieved by the amplifiers. An opto-electrical 3 dB bandwidth of 34 GHz for in-phase and quadrature channel was measured. A real-time data transmission of 64 GBd-QPSK (128 Gb/s) for a single polarization was performed.

© 2018 OAPA

PDF Article

References

  • View by:

  1. K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: Capacity, flexibility, and network optimization,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 4, pp. C12–C23, 2017.
  2. G. Winzeret al., “Monolithic photonic electronic QPSK receiver for 28 Gbaud,” in Proc. Int. Conf. Opt. Fiber Commun., 2015, pp. 5–7.
  3. S. Lischkeet al., “Photonic BiCMOS technology—Enabler for Si-based, monolithically integrated transceivers towards 400 gbps,” in Proc. 11th Eur. Conf. Microw. Integr. Circuits, 2016, pp. 1385–1388.
  4. S. Lischke, D. Knoll, D. Wolansky, M. Kroh, A. Peczek, and L. Zimmermann, “High-speed, high-responsivity Ge photodiode with NiSi contacts for an advanced photonic BiCMOS technology,” in Proc. 14th Int. Conf. Group IV Photon., 2017, pp. 61–62.
  5. C. R. Doerret al., “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 762–764,  2011.
  6. K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett., vol. 23, no. 23, pp. 1769–1771,  2011.
  7. R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett., vol. 36, no. 2, pp. 178–180, 2011.
  8. E. Säckinger, “Transimpedance Amplifiers” in Broadband Circuits for Optical Fiber Communication. Hoboken, NJ, USA: Wiley, 2005.
  9. B. Razavi, “Transimpedance Amplifiers” in Design of Integrated Circuits for Optical Communications, 2nd ed.Hoboken, NJ, USA: Wiley, 2012.
  10. S. M. Park and H. J. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet applications,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 112–121,  2004.
  11. C. Knochenhauer, “Analog frontends for optical communications up to 80 GBit/s,” Ph.D. dissertation, Technische Universität Dresden, Dresden, Germany, 2011.
  12. A. Awnyet al., “A dual 64 Gbaud 10 kOhm 5% THD linear differential transimpedance amplifier with automatic gain control in 0.13 μm BiCMOS technology for optical fiber coherent receivers,” in Proc. Int. Conf. IEEE Solid-State Circuits, 2016, vol. 59, pp. 406–407.
  13. B. Razavi, “Transceiver Architectures” in RF Microelectronics, 2nd ed.Castleton, NY, USA: Prentice-Hall, 2011.
  14. S. Lischkeet al., “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Express, vol. 23, no. 21, pp. 27213–27220, 2015.
  15. K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179,  2016.
  16. R. A. Shafik, M. S. Rahman, and A. H. M. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proc. 4th Int. Conf. Electr. Comput. Eng., 2007, pp. 408–411.
  17. J. Verbistet al., “112 Gbit/s single-polarization silicon coherent receiver with hybrid-integrated BiCMOS linear TIA,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 2–4.

2017 (1)

K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: Capacity, flexibility, and network optimization,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 4, pp. C12–C23, 2017.

2016 (1)

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179,  2016.

2015 (1)

2011 (3)

C. R. Doerret al., “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 762–764,  2011.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett., vol. 23, no. 23, pp. 1769–1771,  2011.

R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett., vol. 36, no. 2, pp. 178–180, 2011.

2004 (1)

S. M. Park and H. J. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet applications,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 112–121,  2004.

Awny, A.

A. Awnyet al., “A dual 64 Gbaud 10 kOhm 5% THD linear differential transimpedance amplifier with automatic gain control in 0.13 μm BiCMOS technology for optical fiber coherent receivers,” in Proc. Int. Conf. IEEE Solid-State Circuits, 2016, vol. 59, pp. 406–407.

Doerr, C. R.

C. R. Doerret al., “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 762–764,  2011.

Gareau, S.

K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: Capacity, flexibility, and network optimization,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 4, pp. C12–C23, 2017.

Halir, R.

Islam, A. H. M. R.

R. A. Shafik, M. S. Rahman, and A. H. M. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proc. 4th Int. Conf. Electr. Comput. Eng., 2007, pp. 408–411.

Kikuchi, K.

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179,  2016.

Knochenhauer, C.

C. Knochenhauer, “Analog frontends for optical communications up to 80 GBit/s,” Ph.D. dissertation, Technische Universität Dresden, Dresden, Germany, 2011.

Knoll, D.

S. Lischke, D. Knoll, D. Wolansky, M. Kroh, A. Peczek, and L. Zimmermann, “High-speed, high-responsivity Ge photodiode with NiSi contacts for an advanced photonic BiCMOS technology,” in Proc. 14th Int. Conf. Group IV Photon., 2017, pp. 61–62.

Kroh, M.

S. Lischke, D. Knoll, D. Wolansky, M. Kroh, A. Peczek, and L. Zimmermann, “High-speed, high-responsivity Ge photodiode with NiSi contacts for an advanced photonic BiCMOS technology,” in Proc. 14th Int. Conf. Group IV Photon., 2017, pp. 61–62.

Laperle, C.

K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: Capacity, flexibility, and network optimization,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 4, pp. C12–C23, 2017.

Lischke, S.

S. Lischkeet al., “High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode,” Opt. Express, vol. 23, no. 21, pp. 27213–27220, 2015.

S. Lischkeet al., “Photonic BiCMOS technology—Enabler for Si-based, monolithically integrated transceivers towards 400 gbps,” in Proc. 11th Eur. Conf. Microw. Integr. Circuits, 2016, pp. 1385–1388.

S. Lischke, D. Knoll, D. Wolansky, M. Kroh, A. Peczek, and L. Zimmermann, “High-speed, high-responsivity Ge photodiode with NiSi contacts for an advanced photonic BiCMOS technology,” in Proc. 14th Int. Conf. Group IV Photon., 2017, pp. 61–62.

Monga, I.

K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: Capacity, flexibility, and network optimization,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 4, pp. C12–C23, 2017.

Ortega-Moñux, A.

Park, S. M.

S. M. Park and H. J. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet applications,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 112–121,  2004.

Peczek, A.

S. Lischke, D. Knoll, D. Wolansky, M. Kroh, A. Peczek, and L. Zimmermann, “High-speed, high-responsivity Ge photodiode with NiSi contacts for an advanced photonic BiCMOS technology,” in Proc. 14th Int. Conf. Group IV Photon., 2017, pp. 61–62.

Petermann, K.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett., vol. 23, no. 23, pp. 1769–1771,  2011.

Rahman, M. S.

R. A. Shafik, M. S. Rahman, and A. H. M. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proc. 4th Int. Conf. Electr. Comput. Eng., 2007, pp. 408–411.

Razavi, B.

B. Razavi, “Transimpedance Amplifiers” in Design of Integrated Circuits for Optical Communications, 2nd ed.Hoboken, NJ, USA: Wiley, 2012.

B. Razavi, “Transceiver Architectures” in RF Microelectronics, 2nd ed.Castleton, NY, USA: Prentice-Hall, 2011.

Roberts, K.

K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: Capacity, flexibility, and network optimization,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 4, pp. C12–C23, 2017.

Roelkens, G.

Säckinger, E.

E. Säckinger, “Transimpedance Amplifiers” in Broadband Circuits for Optical Fiber Communication. Hoboken, NJ, USA: Wiley, 2005.

Shafik, R. A.

R. A. Shafik, M. S. Rahman, and A. H. M. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proc. 4th Int. Conf. Electr. Comput. Eng., 2007, pp. 408–411.

Tian, H.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett., vol. 23, no. 23, pp. 1769–1771,  2011.

Tillack, B.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett., vol. 23, no. 23, pp. 1769–1771,  2011.

Verbist, J.

J. Verbistet al., “112 Gbit/s single-polarization silicon coherent receiver with hybrid-integrated BiCMOS linear TIA,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 2–4.

Voigt, K.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett., vol. 23, no. 23, pp. 1769–1771,  2011.

Wangüemert-Pérez, J. G.

Winzer, G.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett., vol. 23, no. 23, pp. 1769–1771,  2011.

G. Winzeret al., “Monolithic photonic electronic QPSK receiver for 28 Gbaud,” in Proc. Int. Conf. Opt. Fiber Commun., 2015, pp. 5–7.

Wolansky, D.

S. Lischke, D. Knoll, D. Wolansky, M. Kroh, A. Peczek, and L. Zimmermann, “High-speed, high-responsivity Ge photodiode with NiSi contacts for an advanced photonic BiCMOS technology,” in Proc. 14th Int. Conf. Group IV Photon., 2017, pp. 61–62.

Yoo, H. J.

S. M. Park and H. J. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet applications,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 112–121,  2004.

Zhuge, Q.

K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: Capacity, flexibility, and network optimization,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 4, pp. C12–C23, 2017.

Zimmermann, L.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett., vol. 23, no. 23, pp. 1769–1771,  2011.

S. Lischke, D. Knoll, D. Wolansky, M. Kroh, A. Peczek, and L. Zimmermann, “High-speed, high-responsivity Ge photodiode with NiSi contacts for an advanced photonic BiCMOS technology,” in Proc. 14th Int. Conf. Group IV Photon., 2017, pp. 61–62.

IEEE J. Solid-State Circuits (1)

S. M. Park and H. J. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet applications,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 112–121,  2004.

IEEE Photon. Technol. Lett. (2)

C. R. Doerret al., “Packaged monolithic silicon 112-Gb/s coherent receiver,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 762–764,  2011.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett., vol. 23, no. 23, pp. 1769–1771,  2011.

IEEE/OSA J. Opt. Commun. Netw. (1)

K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: Capacity, flexibility, and network optimization,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 4, pp. C12–C23, 2017.

J. Lightw. Technol. (1)

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179,  2016.

Opt. Express (1)

Opt. Lett. (1)

Proc. Int. Conf. IEEE Solid-State Circuits (1)

A. Awnyet al., “A dual 64 Gbaud 10 kOhm 5% THD linear differential transimpedance amplifier with automatic gain control in 0.13 μm BiCMOS technology for optical fiber coherent receivers,” in Proc. Int. Conf. IEEE Solid-State Circuits, 2016, vol. 59, pp. 406–407.

Other (9)

B. Razavi, “Transceiver Architectures” in RF Microelectronics, 2nd ed.Castleton, NY, USA: Prentice-Hall, 2011.

C. Knochenhauer, “Analog frontends for optical communications up to 80 GBit/s,” Ph.D. dissertation, Technische Universität Dresden, Dresden, Germany, 2011.

R. A. Shafik, M. S. Rahman, and A. H. M. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proc. 4th Int. Conf. Electr. Comput. Eng., 2007, pp. 408–411.

J. Verbistet al., “112 Gbit/s single-polarization silicon coherent receiver with hybrid-integrated BiCMOS linear TIA,” in Proc. Eur. Conf. Opt. Commun., 2015, pp. 2–4.

E. Säckinger, “Transimpedance Amplifiers” in Broadband Circuits for Optical Fiber Communication. Hoboken, NJ, USA: Wiley, 2005.

B. Razavi, “Transimpedance Amplifiers” in Design of Integrated Circuits for Optical Communications, 2nd ed.Hoboken, NJ, USA: Wiley, 2012.

G. Winzeret al., “Monolithic photonic electronic QPSK receiver for 28 Gbaud,” in Proc. Int. Conf. Opt. Fiber Commun., 2015, pp. 5–7.

S. Lischkeet al., “Photonic BiCMOS technology—Enabler for Si-based, monolithically integrated transceivers towards 400 gbps,” in Proc. 11th Eur. Conf. Microw. Integr. Circuits, 2016, pp. 1385–1388.

S. Lischke, D. Knoll, D. Wolansky, M. Kroh, A. Peczek, and L. Zimmermann, “High-speed, high-responsivity Ge photodiode with NiSi contacts for an advanced photonic BiCMOS technology,” in Proc. 14th Int. Conf. Group IV Photon., 2017, pp. 61–62.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved