Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 10,
  • pp. 2270-2283
  • (2019)

Nonlinearity Mitigation in WDM Systems: Models, Strategies, and Achievable Rates

Not Accessible

Your library or personal account may give you access

Abstract

After reviewing models and mitigation strategies for interchannel nonlinear interference (NLI), we study its characteristics and coherence properties. Based on this study, we devise an NLI mitigation strategy, which exploits the synergic effect of phase and polarization noise (PPN) compensation and subcarrier multiplexing with symbol-rate optimization. This synergy persists even for high-order modulation alphabets and Gaussian symbols. A particle method for the computation of the resulting achievable information rate and spectral efficiency (SE) is presented and employed to lower-bound the channel capacity. The dependence of the SE on the link length, amplifier spacing, and presence or absence of in-line dispersion compensation is studied. Single-polarization and dual-polarization scenarios with either independent or joint processing of the two polarizations are considered. Numerical results show that, in links with ideal distributed amplification, an SE gain of about 1 bit/s/Hz/polarization can be obtained (or, in alternative, the system reach can be doubled at a given SE) with respect to single-carrier systems without PPN mitigation. The gain is lower with lumped amplification, increases with the number of spans, decreases with the span length, and is further reduced by in-line dispersion compensation. For instance, considering a dispersion-unmanaged link with lumped amplification and an amplifier spacing of 60 km, the SE after 80 spans can be be increased from 4.5 to 4.8 bit/s/Hz/polarization, or the reach raised up to 100 spans (+25%) for a fixed SE.

© 2019 IEEE

PDF Article
More Like This
Nonlinear mitigation on subcarrier-multiplexed PM-16QAM optical systems

F. P. Guiomar, A. Carena, G. Bosco, L. Bertignono, A. Nespola, and P. Poggiolini
Opt. Express 25(4) 4298-4311 (2017)

Channel model and the achievable information rates of the optical nonlinear frequency division-multiplexed systems employing continuous b-modulation

Stanislav Derevyanko, Muyiwa Balogun, Ofer Aluf, Dmitry Shepelsky, and Jaroslaw E. Prilepsky
Opt. Express 29(5) 6384-6406 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.