Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 10,
  • pp. 2443-2451
  • (2019)

How to Increase the Achievable Information Rate by Per-Channel Dispersion Compensation

Not Accessible

Your library or personal account may give you access

Abstract

Deploying periodic inline chromatic dispersion compensation enables reducing the complexity of the digital back propagation (DBP) algorithm. However, compared with nondispersion-managed (NDM) links, dispersion-managed (DM) ones suffer a stronger cross-phase modulation (XPM). Utilizing per-channel dispersion-managed (CDM) links (e.g., using fiber Bragg grating) allows for a complexity reduction of DBP, while abating XPM compared to DM links. In this paper, we show for the first time that CDM links enable also a more effective XPM compensation compared to NDM ones, allowing a higher achievable information rate (AIR). This is explained by resorting to the frequency-resolved logarithmic perturbation model and showing that per-channel dispersion compensation increases the frequency correlation of the distortions induced by XPM over the channel bandwidth, making them more similar to a conventional phase noise. We compare the performance (in terms of the AIR) of a DM, an NDM, and a CDM link, considering two types of mismatched receivers: one neglects the XPM phase distortion and the other compensates for it. With the former, the CDM link is inferior to the NDM one due to an increased in-band signal–noise interaction. However, with the latter, a higher AIR is obtained with the CDM link than with the NDM one owing to a higher XPM frequency correlation. The DM link has the lowest AIR for both receivers because of a stronger XPM.

© 2019 IEEE

PDF Article
More Like This
Digital compensation of cross-phase modulation distortions using perturbation technique for dispersion-managed fiber-optic systems

Xiaojun Liang, Shiva Kumar, Jing Shao, Mahdi Malekiha, and David V. Plant
Opt. Express 22(17) 20634-20645 (2014)

Achievable information rates estimates in optically amplified transmission systems using nonlinearity compensation and probabilistic shaping

Daniel Semrau, Tianhua Xu, Nikita A. Shevchenko, Milen Paskov, Alex Alvarado, Robert I. Killey, and Polina Bayvel
Opt. Lett. 42(1) 121-124 (2017)

Optoelectronic method for inline compensation of XPM in long-haul optical links

Benjamin Foo, Bill Corcoran, and Arthur Lowery
Opt. Express 23(2) 859-872 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.