Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 19,
  • pp. 5083-5090
  • (2019)

Impact of Turbulent-Flow-Induced Scintillation on Deep-Ocean Wireless Optical Communication

Open Access Open Access

Abstract

The use of autonomous underwater vehicles (AUVs) is highly desirable for collecting data from seafloor sensor platforms within a close range. With the recent innovations in underwater wireless optical communication (UWOC) for deep-sea exploration, UWOC could be used in conjunction with AUVs for high-speed data uploads near the surface. In addition to absorption and scattering effects, UWOC undergoes scintillation induced by temperature- and salinity-related turbulence. However, studies on scintillation have been limited to emulating channels with uniform temperature and salinity gradients, rather than incorporating the effects of turbulent motion. Such turbulent flow results in an ocean mixing process that degrades optical communication. This study presents a turbulent model for investigating the impact of vehicle-motion-induced turbulence via the turbulent kinetic energy dissipation rate. This scintillation-related parameter offers a representation of the change in the refractive index due to the turbulent flow and ocean mixing. Monte Carlo simulations are carried out to validate the impact of turbulent flow on optical scintillation. In experimental measurements, the scintillation index (SI) and signal-to-noise ratio (SNR) are similar with (SI = 0.4824; SNR = 5.56) and without (SI = 0.4823; SNR = 5.87) water mixing under uniform temperature channels. By introducing a temperature gradient of 4 °C, SI (SNR) with and without turbulent flow changed to 0.5417 (5.06) and 0.8790 (3.40), respectively. The experimental results show a similar trend to the simulation results. Thus, turbulent flow was shown to significantly impact underwater optical communications.

PDF Article
More Like This
Compact scintillating-fiber/450-nm-laser transceiver for full-duplex underwater wireless optical communication system under turbulence

Yujian Guo, Meiwei Kong, Mohammed Sait, Sohailh Marie, Omar Alkhazragi, Tien Khee Ng, and Boon S. Ooi
Opt. Express 30(1) 53-69 (2022)

Scintillations of LED sources in oceanic turbulence

Yahya Baykal
Appl. Opt. 55(31) 8860-8863 (2016)

Scintillation index for the optical wave in the vertical oceanic link with anisotropic tilt angle

Zhiru Lin, Guanjun Xu, Weizhi Wang, Qinyu Zhang, and Zhaohui Song
Opt. Express 30(21) 38804-38820 (2022)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.