Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

On the Performance of Digital Back Propagation in Spatial Multiplexing Systems

Not Accessible

Your library or personal account may give you access

Abstract

Nonlinear performance in spatial multiplexing systems is strongly determined by the interplay between differential mode delay, linear mode coupling, and Kerr nonlinearity. In this article we review and extend the analysis of different solution methods for the linear coupling operator in the coupled nonlinear Schrödinger equation for spatial multiplexed propagation. Numerical solution methods are compared for different operational regimes as determined by differential mode delay and linear mode coupling. Finally, we review and extend the study of digital methods to mitigate the Kerr nonlinearity for arbitrary levels of random linear mode coupling. For the first time, it is shown that in spatial multiplexing systems transmission performance can be improved by reducing the number of back propagated channels for non-negligible levels of differential mode delay.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved