Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 15,
  • pp. 3897-3907
  • (2020)

Independent Component Analysis for Phase and Residual Frequency Offset Compensation in OQAM Multicarrier Systems

Not Accessible

Your library or personal account may give you access

Abstract

Phase noise in the offset quadrature amplitude modulation (OQAM) multicarrier system results in not only constellation rotation but also crosstalk from the unique intrinsic imaginary interference (IMI). Therefore, the method for phase and residual frequency offset (RFO) compensation should be designed specifically to address this. In this article, we exploit the statistical difference of the OQAM signal and the IMI, and propose a novel independent component analysis (ICA) based method for phase and RFO compensation. It is proved that the signal exhibits the minimal entropy with the probability distribution deviating from the Gaussian one the most when the phase is correctly compensated. Several metrics and a recursive algorithm are proposed to separate the signal and the IMI. Simulations and experiments are performed to verify the proposed theory and to compare the ICA method with modified blind phase search (M-BPS), constellation classification (CC), and Kalman filtering (KL). It is shown that the ICA method exhibits significantly better tolerance to the laser linewidth and RFO than CC and KL, and greatly reduces the complexity compared to M-BPS. Therefore, the proposed ICA method can be the most promising solution for phase and RFO compensation in OQAM multicarrier systems.

PDF Article
More Like This
Feed-forward carrier phase recovery for offset-QAM Nyquist WDM transmission

Haoyuan Tang, Meng Xiang, Songnian Fu, Ming Tang, Perry Shum, and Deming Liu
Opt. Express 23(5) 6215-6227 (2015)

Estimation and compensation of sample frequency offset in coherent optical OFDM systems

Xingwen Yi and Kun Qiu
Opt. Express 19(14) 13503-13508 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.