Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 9,
  • pp. 2646-2655
  • (2020)

ANN-Based Multi-Channel QoT-Prediction Over a 563.4-km Field-Trial Testbed

Not Accessible

Your library or personal account may give you access

Abstract

In this article, artificial neural network (ANN)-based multi-channel Q-factor prediction is investigated with real-time network operation and configuration information over a 563.4-km field-trial testbed. A unified ANN-based regression model is proposed and implemented to predict Q-factors of all the channels simultaneously. A scenario generator is developed to configure the field-trial testbed with eight testing channels automatically to generate dynamic scenarios. A network configuration and monitoring database (CMDB) is implemented to collect network configuration and monitoring data that include link information, operational parameters of key optical devices, network configuration state, and real-time Q-factors of the available channels for the generated network scenarios. These collected data are used for training and testing of the developed ANN model. In order to achieve multiple channel predictions, we propose a hot coding method to represent the state of dynamic channel. Besides, an auto-search method is used to search the best hyperparameters of the ANN-based model. The results show that the proposed ANN-based regression model converges quickly, and it can predict the multi-channel's Q-factors with high accuracy. The unified ANN-based multi-channel Q-factor regression model can provide the comprehensive information to assist SDN controller to optimize network configuration for dynamic optical networks.

PDF Article
More Like This
Experimental Demonstration of Machine-Learning-Aided QoT Estimation in Multi-Domain Elastic Optical Networks with Alien Wavelengths

Roberto Proietti, Xiaoliang Chen, Kaiqi Zhang, Gengchen Liu, M. Shamsabardeh, Alberto Castro, Luis Velasco, Zuqing Zhu, and S. J. Ben Yoo
J. Opt. Commun. Netw. 11(1) A1-A10 (2019)

Evolutionary neuron-level transfer learning for QoT estimation in optical networks

Yuhang Zhou, Zhiqun Gu, Jiawei Zhang, and Yuefeng Ji
J. Opt. Commun. Netw. 16(4) 432-448 (2024)

Scalability analysis of machine learning QoT estimators for a cloud-native SDN controller on a WDM over SDM network

C. Manso, R. Vilalta, R. Muñoz, N. Yoshikane, R. Casellas, R. Martínez, C. Wang, F. Balasis, T. Tsuritani, and I. Morita
J. Opt. Commun. Netw. 14(4) 257-266 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.