Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 19,
  • pp. 6142-6149
  • (2021)

Nonlinear Quantization for Power-Domain Non-Orthogonal Multiple Access Passive Optical Network

Open Access Open Access

Abstract

A passive optical network (PON) system is required to accommodate multi-services represented by fifth/sixth (5G/6G) mobile communication systems. While maintaining low cost, to meet these requirements (which are high capacity, low latency, and high reliability), the PON system must accommodate a large number of optical network units (ONUs). The use of power-domain non-orthogonal multiple access (PD-NOMA) for PON has been studied to increase the number of accommodatable ONUs. However, with an increase in the ratio of transmitted power between multiplexed ONUs, the effect of quantization noise in the analog-to-digital converter (ADC) is more significant. This study proposes to apply an optimal quantizer based on the Lloyd-Max algorithm (which is a nonlinear quantization algorithm) to PD-NOMA-PON. In general, the Lloyd-Max algorithm requires continuous probability density function when setting the partitions. We adopt a continuous function estimated from the discrete probability distribution extracted by the low-resolution ADC using an expectation maximization algorithm. We conduct experiments to verify the feasibility of the proposed quantizer for the downlink and confirm the improvement of the optical signal-to-noise ratio penalty for all power ratios.

PDF Article

References

  • View by:

  1. K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.
  2. N. Yoshimoto, J. Kani, S. Kim, N. Iiyama, and J. Terada, “DSP-based optical access approaches for enhancing NG-PON2 systems,” IEEE Commun. Mag., vol. 51, no. 3, pp. 58–64,  2013.
  3. N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.
  4. ITU-T G.989.2, “40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification - Amendment 1,” 2019.
  5. J. A. Altabas, “Nonorthogonal multiple access and carrierless amplitude phase modulation for flexible multiuser provisioning in 5G mobile networks,” J. Lightw. Technol., vol. 35, no. 24, pp. 5456–5463, 2017.
  6. R. C. Kizilirmak, C. R. Rowell, and M. Uysal, “Non-orthogonal multiple access (NOMA) for indoor visible light communications,” in Proc. 4th Int. Workshop Opt. Wireless Commun., 2015, pp. 98–101, doi: .
  7. N. Iiyama, J. Kani, J. Terada, and N. Yoshimoto, “Feasibility study on a scheme for coexistence of DSP-based PON and 10-Gbps/2303ı PON using hierarchical star QAM format,” J. Lightw. Technol., vol. 31, no. 18, pp. 3085–3092, 2013.
  8. S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129–137,  1982.
  9. K. Suzuoki, D. Hisano, S. Shibita, K. Maruta, and A. Maruta, “Experimental demonstration of Lloyd-max algorithm to quantization noise reduction on a power-domain non-orthogonal multiple access based coherent PON,” in Proc. Eur. Conf. Opt. Commun., Brussels, 2020, pp. 1–4, doi: .
  10. F. Lu, M. Xu, L. Cheng, J. Wang, J. Zhang, and G. Chang, “Non-orthogonal multiple access with successive interference cancellation in millimeter-wave radio-overfiber systems,” J. Lightw. Technol., vol. 34, no. 17, pp. 4179–4186, 2016.
  11. C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 2006.
  12. K. Higuchi and A. Benjebbour, “Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access,” IEICE Trans. Commun., vol. E 98-B, no. 3, pp. 403–414, 2015.
  13. NTT docomo, “DOCOMO 5G White Paper,” [Online]. Available: https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/whitepaper_5 g/DOCOMO_5G_White_Paper.pdf, Retrieved on Jul. 15, 2021.
  14. ITU-T G.975.1, “Forward error correction for high bit-rate DWDM submarine systems Corrigendum 2,” Jul. 2013.
  15. T. Nakagawa, “Non-data-aided wide-range frequency offset estimator for qam optical coherent receivers,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., 2011, pp. 1–3.
  16. S.R.A. KullbackLeibler. “On information and sufficiency,” Ann. Math. Statist., vol. 22, no. 1, 79–86, 1951.

Altabas, J. A.

J. A. Altabas, “Nonorthogonal multiple access and carrierless amplitude phase modulation for flexible multiuser provisioning in 5G mobile networks,” J. Lightw. Technol., vol. 35, no. 24, pp. 5456–5463, 2017.

Benjebbour, A.

K. Higuchi and A. Benjebbour, “Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access,” IEICE Trans. Commun., vol. E 98-B, no. 3, pp. 403–414, 2015.

Bishop, C. M.

C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 2006.

Chang, G.

F. Lu, M. Xu, L. Cheng, J. Wang, J. Zhang, and G. Chang, “Non-orthogonal multiple access with successive interference cancellation in millimeter-wave radio-overfiber systems,” J. Lightw. Technol., vol. 34, no. 17, pp. 4179–4186, 2016.

Cheng, L.

F. Lu, M. Xu, L. Cheng, J. Wang, J. Zhang, and G. Chang, “Non-orthogonal multiple access with successive interference cancellation in millimeter-wave radio-overfiber systems,” J. Lightw. Technol., vol. 34, no. 17, pp. 4179–4186, 2016.

docomo, NTT

NTT docomo, “DOCOMO 5G White Paper,” [Online]. Available: https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/whitepaper_5 g/DOCOMO_5G_White_Paper.pdf, Retrieved on Jul. 15, 2021.

G, ITU-T

ITU-T G.975.1, “Forward error correction for high bit-rate DWDM submarine systems Corrigendum 2,” Jul. 2013.

ITU-T G.989.2, “40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification - Amendment 1,” 2019.

Higuchi, K.

K. Higuchi and A. Benjebbour, “Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access,” IEICE Trans. Commun., vol. E 98-B, no. 3, pp. 403–414, 2015.

Hisano, D.

K. Suzuoki, D. Hisano, S. Shibita, K. Maruta, and A. Maruta, “Experimental demonstration of Lloyd-max algorithm to quantization noise reduction on a power-domain non-orthogonal multiple access based coherent PON,” in Proc. Eur. Conf. Opt. Commun., Brussels, 2020, pp. 1–4, doi: .

Iiyama, N.

N. Iiyama, J. Kani, J. Terada, and N. Yoshimoto, “Feasibility study on a scheme for coexistence of DSP-based PON and 10-Gbps/2303ı PON using hierarchical star QAM format,” J. Lightw. Technol., vol. 31, no. 18, pp. 3085–3092, 2013.

N. Yoshimoto, J. Kani, S. Kim, N. Iiyama, and J. Terada, “DSP-based optical access approaches for enhancing NG-PON2 systems,” IEEE Commun. Mag., vol. 51, no. 3, pp. 58–64,  2013.

Kani, J.

N. Yoshimoto, J. Kani, S. Kim, N. Iiyama, and J. Terada, “DSP-based optical access approaches for enhancing NG-PON2 systems,” IEEE Commun. Mag., vol. 51, no. 3, pp. 58–64,  2013.

N. Iiyama, J. Kani, J. Terada, and N. Yoshimoto, “Feasibility study on a scheme for coexistence of DSP-based PON and 10-Gbps/2303ı PON using hierarchical star QAM format,” J. Lightw. Technol., vol. 31, no. 18, pp. 3085–3092, 2013.

Kikuchi, K.

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

Kim, S.

N. Yoshimoto, J. Kani, S. Kim, N. Iiyama, and J. Terada, “DSP-based optical access approaches for enhancing NG-PON2 systems,” IEEE Commun. Mag., vol. 51, no. 3, pp. 58–64,  2013.

Kizilirmak, R. C.

R. C. Kizilirmak, C. R. Rowell, and M. Uysal, “Non-orthogonal multiple access (NOMA) for indoor visible light communications,” in Proc. 4th Int. Workshop Opt. Wireless Commun., 2015, pp. 98–101, doi: .

Kullback, S.R.A.

S.R.A. KullbackLeibler. “On information and sufficiency,” Ann. Math. Statist., vol. 22, no. 1, 79–86, 1951.

Leibler,

S.R.A. KullbackLeibler. “On information and sufficiency,” Ann. Math. Statist., vol. 22, no. 1, 79–86, 1951.

Lloyd, S.

S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129–137,  1982.

Lu, F.

F. Lu, M. Xu, L. Cheng, J. Wang, J. Zhang, and G. Chang, “Non-orthogonal multiple access with successive interference cancellation in millimeter-wave radio-overfiber systems,” J. Lightw. Technol., vol. 34, no. 17, pp. 4179–4186, 2016.

M,

R. C. Kizilirmak, C. R. Rowell, and M. Uysal, “Non-orthogonal multiple access (NOMA) for indoor visible light communications,” in Proc. 4th Int. Workshop Opt. Wireless Commun., 2015, pp. 98–101, doi: .

Maruta, A.

K. Suzuoki, D. Hisano, S. Shibita, K. Maruta, and A. Maruta, “Experimental demonstration of Lloyd-max algorithm to quantization noise reduction on a power-domain non-orthogonal multiple access based coherent PON,” in Proc. Eur. Conf. Opt. Commun., Brussels, 2020, pp. 1–4, doi: .

Maruta, K.

K. Suzuoki, D. Hisano, S. Shibita, K. Maruta, and A. Maruta, “Experimental demonstration of Lloyd-max algorithm to quantization noise reduction on a power-domain non-orthogonal multiple access based coherent PON,” in Proc. Eur. Conf. Opt. Commun., Brussels, 2020, pp. 1–4, doi: .

Matsuda, K.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

Matsumoto, R.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

Miura, H.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

Motoshima, K.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

Nakagawa, T.

T. Nakagawa, “Non-data-aided wide-range frequency offset estimator for qam optical coherent receivers,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., 2011, pp. 1–3.

Rowell, C. R.

R. C. Kizilirmak, C. R. Rowell, and M. Uysal, “Non-orthogonal multiple access (NOMA) for indoor visible light communications,” in Proc. 4th Int. Workshop Opt. Wireless Commun., 2015, pp. 98–101, doi: .

Shibita, S.

K. Suzuoki, D. Hisano, S. Shibita, K. Maruta, and A. Maruta, “Experimental demonstration of Lloyd-max algorithm to quantization noise reduction on a power-domain non-orthogonal multiple access based coherent PON,” in Proc. Eur. Conf. Opt. Commun., Brussels, 2020, pp. 1–4, doi: .

Suzuki, N.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

Suzuoki, K.

K. Suzuoki, D. Hisano, S. Shibita, K. Maruta, and A. Maruta, “Experimental demonstration of Lloyd-max algorithm to quantization noise reduction on a power-domain non-orthogonal multiple access based coherent PON,” in Proc. Eur. Conf. Opt. Commun., Brussels, 2020, pp. 1–4, doi: .

Terada, J.

N. Yoshimoto, J. Kani, S. Kim, N. Iiyama, and J. Terada, “DSP-based optical access approaches for enhancing NG-PON2 systems,” IEEE Commun. Mag., vol. 51, no. 3, pp. 58–64,  2013.

N. Iiyama, J. Kani, J. Terada, and N. Yoshimoto, “Feasibility study on a scheme for coexistence of DSP-based PON and 10-Gbps/2303ı PON using hierarchical star QAM format,” J. Lightw. Technol., vol. 31, no. 18, pp. 3085–3092, 2013.

Wang, J.

F. Lu, M. Xu, L. Cheng, J. Wang, J. Zhang, and G. Chang, “Non-orthogonal multiple access with successive interference cancellation in millimeter-wave radio-overfiber systems,” J. Lightw. Technol., vol. 34, no. 17, pp. 4179–4186, 2016.

Xu, M.

F. Lu, M. Xu, L. Cheng, J. Wang, J. Zhang, and G. Chang, “Non-orthogonal multiple access with successive interference cancellation in millimeter-wave radio-overfiber systems,” J. Lightw. Technol., vol. 34, no. 17, pp. 4179–4186, 2016.

Yoshimoto, N.

N. Iiyama, J. Kani, J. Terada, and N. Yoshimoto, “Feasibility study on a scheme for coexistence of DSP-based PON and 10-Gbps/2303ı PON using hierarchical star QAM format,” J. Lightw. Technol., vol. 31, no. 18, pp. 3085–3092, 2013.

N. Yoshimoto, J. Kani, S. Kim, N. Iiyama, and J. Terada, “DSP-based optical access approaches for enhancing NG-PON2 systems,” IEEE Commun. Mag., vol. 51, no. 3, pp. 58–64,  2013.

Zhang, J.

F. Lu, M. Xu, L. Cheng, J. Wang, J. Zhang, and G. Chang, “Non-orthogonal multiple access with successive interference cancellation in millimeter-wave radio-overfiber systems,” J. Lightw. Technol., vol. 34, no. 17, pp. 4179–4186, 2016.

Other (16)

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

N. Yoshimoto, J. Kani, S. Kim, N. Iiyama, and J. Terada, “DSP-based optical access approaches for enhancing NG-PON2 systems,” IEEE Commun. Mag., vol. 51, no. 3, pp. 58–64,  2013.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, “100 Gb/s to 1 Tb/s based coherent passive optical network technology,” J. Lightw. Technol., vol. 36, no. 8, pp. 1485–1491, 2018.

ITU-T G.989.2, “40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification - Amendment 1,” 2019.

J. A. Altabas, “Nonorthogonal multiple access and carrierless amplitude phase modulation for flexible multiuser provisioning in 5G mobile networks,” J. Lightw. Technol., vol. 35, no. 24, pp. 5456–5463, 2017.

R. C. Kizilirmak, C. R. Rowell, and M. Uysal, “Non-orthogonal multiple access (NOMA) for indoor visible light communications,” in Proc. 4th Int. Workshop Opt. Wireless Commun., 2015, pp. 98–101, doi: .

N. Iiyama, J. Kani, J. Terada, and N. Yoshimoto, “Feasibility study on a scheme for coexistence of DSP-based PON and 10-Gbps/2303ı PON using hierarchical star QAM format,” J. Lightw. Technol., vol. 31, no. 18, pp. 3085–3092, 2013.

S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129–137,  1982.

K. Suzuoki, D. Hisano, S. Shibita, K. Maruta, and A. Maruta, “Experimental demonstration of Lloyd-max algorithm to quantization noise reduction on a power-domain non-orthogonal multiple access based coherent PON,” in Proc. Eur. Conf. Opt. Commun., Brussels, 2020, pp. 1–4, doi: .

F. Lu, M. Xu, L. Cheng, J. Wang, J. Zhang, and G. Chang, “Non-orthogonal multiple access with successive interference cancellation in millimeter-wave radio-overfiber systems,” J. Lightw. Technol., vol. 34, no. 17, pp. 4179–4186, 2016.

C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 2006.

K. Higuchi and A. Benjebbour, “Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access,” IEICE Trans. Commun., vol. E 98-B, no. 3, pp. 403–414, 2015.

NTT docomo, “DOCOMO 5G White Paper,” [Online]. Available: https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/whitepaper_5 g/DOCOMO_5G_White_Paper.pdf, Retrieved on Jul. 15, 2021.

ITU-T G.975.1, “Forward error correction for high bit-rate DWDM submarine systems Corrigendum 2,” Jul. 2013.

T. Nakagawa, “Non-data-aided wide-range frequency offset estimator for qam optical coherent receivers,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., 2011, pp. 1–3.

S.R.A. KullbackLeibler. “On information and sufficiency,” Ann. Math. Statist., vol. 22, no. 1, 79–86, 1951.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved