Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 20,
  • pp. 6509-6523
  • (2021)

2D Optical Phased Arrays for Laser Beam Steering Based On 3D Polymer Photonic Integrated Circuits

Open Access Open Access

Abstract

We propose a novel concept for the implementation of 2-dimensional (2D) optical phased arrays (OPAs) with end-fire waveguides as antenna elements (AEs), and we present its theoretical model and experimental proof. The concept is based on the use of 3-dimensional (3D) photonic integrated circuits (PICs) with multiple waveguiding layers on the PolyBoard platform. In their simplest form, the 3D PICs comprise AEs at different layers, vertical and lateral couplers for the distribution of light among the AEs, and phase shifters for the execution of the 2D beam scanning process. Using the field equivalence principle, we model the radiated field from the single-mode waveguide of the platform at 1550 nm, and we find that the expected beam width is 12.7°. We also investigate the perturbation that is induced into propagating fields inside parallel waveguides in proximity, and we conclude that waveguide spacings down to 6 µm can be safely used for development of uniform OPAs in the PolyBoard platform. For OPAs with 6 µm pitch and 4 AEs, we find that the maximum steering angle is 14.0° and the expected angular clearance, wherein the main radiation lobe is higher than any grating lobe by at least 3, 6 and 10 dB is 10.8°, 7.6° and 2.8°, respectively. Based on our simulations, we design and fabricate single- and 2-layer PICs with 1 × 4 and 2 × 4 OPAs. The lateral pitch of the OPAs ranges from 10 down to 6 µm, while the vertical pitch is 7.2 µm. We experimentally characterize these OPAs and validate the potential of the 2-layer PICs for 2D beam scanning on the azimuthal and elevation plane. The beam profiles and the main scanning parameters such as the maximum steering angle and the relative intensity between the main and the grating lobes are found in excellent agreement with our simulations.

PDF Article

References

  • View by:

  1. X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si photonics for practical LiDAR solutions,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .
  2. C. V. Poulton, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett., vol. 42, pp. 4091–4094, 2017.
  3. C. V. Poulton, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, 2019, Art no. 7700108.
  4. S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 275–296, 2018.
  5. X. J. Fu, F. Yang, C. X. Liu, X. J. Wu, and T. J. Cui, “Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces,” Adv. Opt. Mater., 2020, vol. 8, Art. no. . [Online]. Available: .
    [Crossref]
  6. M. J. R. Heck, “Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics, vol. 6, no. 1, pp. 93–107, 2017. [Online]. Available: .
    [Crossref]
  7. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett., vol. 34, pp. 1477–1479, 2009.
  8. K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator,” J. Lightw. Technol., vol. 29, no. 23, pp. 3500–3505, 2011, doi: .
    [Crossref]
  9. J. K. Doylend, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett., vol. 37, pp. 4257–4259, 2012.
  10. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett., vol. 39, pp. 4575–4578, 2014.
  11. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Exp., vol. 19, pp. 21595–21604, 2011.
  12. D. Kwong, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett., vol. 39, pp. 941–944, 2014.
  13. J. C. Hulme, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Exp., vol. 23, pp. 5861–5874, 2015.
  14. D. N. Hutchison, “High-resolution aliasing-free optical beam steering,” Optica, vol. 3, pp. 887–890, 2016.
  15. C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Proc. Adv. Photon., 2016, Art. no. .
  16. S. A. Miller, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica, vol. 7, no. 1, pp. 3–6, 2020.
  17. Y. Zhang, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Exp., vol. 27, pp. 1929–1940, 2019.
  18. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Exp., vol. 18, pp. 13655–13660, 2010.
  19. F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic projection system,” Opt. Exp., vol. 23, pp. 21012–21022, 2015.
  20. J. Sun, “Large-scale nanophotonic phased array,” Nature, vol. 493, pp. 195–199, 2013, [Online]. Available: .
    [Crossref]
  21. J. Sun, “Two-dimensional apodized silicon photonic phased arrays,” Opt. Lett., vol. 39, pp. 367–370, 2014.
  22. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Exp., vol. 23, pp. 6509–6519, 2015.
  23. C. Qin, K. Shang, S. Feng, G. Liu, S. Pathak, and S. J. B. Yoo, “1 × 256 multi-layer, low-loss, Si3N4 waveguide optical phased arrays with 0.050° instantaneous-field-of-view,” in Proc. 2017 Conf. Lasers Electro-Opt., San Jose, CA, USA, 2017, pp. 1–2.
  24. M. C. Shin, “Chip-scale blue light phased array,” Opt. Lett., vol. 45, pp. 1934–1937, 2020.
  25. M. R. Kossey, C. Rizk, and A. C. Foster, “End-fire silicon optical phased array with half-wavelength spacing,” APL Photon., vol. 3, no. 1, 2018, Art. no. .
  26. C. T. Phare, C. S. Min, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” 2018, arXiv:1802.04624.
  27. A. Hosseini, “On the fabrication of three-dimensional silicon-on-insulator based optical phased array for agile and large angle laser beam steering systems,” J. Vac. Sci. Technol. B, vol. 28, no. 6, pp. C6O1–C6O7, 2010.
  28. S. Yoo, B. Guan, and R. Scott, “Heterogeneous 2D/3D photonic integrated microsystems,” Microsyst. Nanoeng, vol. 2, 2016, Art. no. . [Online]. Available: .
    [Crossref]
  29. B. Guan, “Hybrid 3D photonic integrated circuit for optical phased array beam steering,” in Proc. Conf. Lasers Electro-Opt., 2015, Art. no. u2F.1.
  30. S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications,” Nanophotonics, vol. 4, no. 3, pp. 332–352, 2015. [Online]. Available: .
    [Crossref]
  31. Z. Zhang, “Hybrid photonic integration on a polymer platform,” Photonics, vol. 2, pp. 1005–1026, 2015. [Online]. Available: .
    [Crossref]
  32. M. Nuck, “Low-loss vertical MMI coupler for 3D photonic integration,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, pp. 1–3, doi: .
  33. Z. Zhang, “Multicore polymer waveguides and multistep 45° mirrors for 3D photonic integration,” IEEE Photon. Technol. Lett., vol. 26, no. 19, pp. 1986–1989, Oct. 2014.
  34. F. David de, “Recent developments in polymer-based photonic components for disruptive capacity upgrade in data centers,” J. Lightw. Technol., vol. 35, pp. 683–689, Feb. 2017.
  35. C. A. Balanis, Antenna Theory: Analysis and Design. 3rd ed., Hoboken, NJ, USA: Wiley, 2005.
  36. M. Kleinert, “Photonic integrated devices and functions on hybrid polymer platform,” in Proc. Phys. Simul. Optoelectron. Devices, 2017, Art. no. .
  37. V. Katopodis, “Polymer enabled 100Gbaud connectivity for datacom applications,” Opt. Commun., vol. 362, pp. 13–21, 2016, [Online]. Available: .
    [Crossref]
  38. P. Groumas, “Tunable 100 Gbaud transmitter based on hybrid polymer-to-polymer integration for flexible optical interconnects,” J. Lightw. Technol., vol. 34, no. 2, pp. 407–418, Jan. 2016, doi: .
    [Crossref]
  39. M. Nuck, “3D photonic integrated 4x4 multi-mode interference coupler,” in Proc. Integr. Opt.: Devices Mater. Technol., 2019, Art. no. , doi: .
  40. D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1 × 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett., vol. 99, no. 5, 2011, Art. no. .
  41. W. Song, “High-density waveguide superlattices with low crosstalk,” Nature Commun., vol. 6, no. 1, 2015, pp. 1–9, [Online]. Available: .
    [Crossref]
  42. T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, pp. 2511–2528, 2017.
  43. J. Van Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: Analysis and assessment,” J. Opt. Soc. Amer., vol. 71, pp. 803–810, 1981.
  44. [Online] Available:https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-beamprop.html
  45. N. L. Thomas, R. Houdré, M. V. Kotlyar, D. O'Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Amer. B, vol. 24, pp. 2964–2971, 2007.
  46. P. Stepanov, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett., vol. 107, 2015, Art. no. .
  47. N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, and C. Caspar, “4x4 polymer thermo-optic directional coupler switch at 1.55 μm,” in Proc. Conf. Opt. Fiber Commun., 1994, Art. no. .
  48. [Online] Available:http://ict-3peat.eu/

2020 (3)

X. J. Fu, F. Yang, C. X. Liu, X. J. Wu, and T. J. Cui, “Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces,” Adv. Opt. Mater., 2020, vol. 8, Art. no. . [Online]. Available: .
[Crossref]

S. A. Miller, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica, vol. 7, no. 1, pp. 3–6, 2020.

M. C. Shin, “Chip-scale blue light phased array,” Opt. Lett., vol. 45, pp. 1934–1937, 2020.

2019 (3)

Y. Zhang, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Exp., vol. 27, pp. 1929–1940, 2019.

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si photonics for practical LiDAR solutions,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

C. V. Poulton, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, 2019, Art no. 7700108.

2018 (3)

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 275–296, 2018.

M. R. Kossey, C. Rizk, and A. C. Foster, “End-fire silicon optical phased array with half-wavelength spacing,” APL Photon., vol. 3, no. 1, 2018, Art. no. .

C. T. Phare, C. S. Min, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” 2018, arXiv:1802.04624.

2017 (4)

F. David de, “Recent developments in polymer-based photonic components for disruptive capacity upgrade in data centers,” J. Lightw. Technol., vol. 35, pp. 683–689, Feb. 2017.

C. V. Poulton, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett., vol. 42, pp. 4091–4094, 2017.

M. J. R. Heck, “Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics, vol. 6, no. 1, pp. 93–107, 2017. [Online]. Available: .
[Crossref]

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, pp. 2511–2528, 2017.

2016 (4)

V. Katopodis, “Polymer enabled 100Gbaud connectivity for datacom applications,” Opt. Commun., vol. 362, pp. 13–21, 2016, [Online]. Available: .
[Crossref]

P. Groumas, “Tunable 100 Gbaud transmitter based on hybrid polymer-to-polymer integration for flexible optical interconnects,” J. Lightw. Technol., vol. 34, no. 2, pp. 407–418, Jan. 2016, doi: .
[Crossref]

D. N. Hutchison, “High-resolution aliasing-free optical beam steering,” Optica, vol. 3, pp. 887–890, 2016.

S. Yoo, B. Guan, and R. Scott, “Heterogeneous 2D/3D photonic integrated microsystems,” Microsyst. Nanoeng, vol. 2, 2016, Art. no. . [Online]. Available: .
[Crossref]

2015 (7)

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications,” Nanophotonics, vol. 4, no. 3, pp. 332–352, 2015. [Online]. Available: .
[Crossref]

Z. Zhang, “Hybrid photonic integration on a polymer platform,” Photonics, vol. 2, pp. 1005–1026, 2015. [Online]. Available: .
[Crossref]

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Exp., vol. 23, pp. 6509–6519, 2015.

W. Song, “High-density waveguide superlattices with low crosstalk,” Nature Commun., vol. 6, no. 1, 2015, pp. 1–9, [Online]. Available: .
[Crossref]

F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic projection system,” Opt. Exp., vol. 23, pp. 21012–21022, 2015.

J. C. Hulme, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Exp., vol. 23, pp. 5861–5874, 2015.

P. Stepanov, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett., vol. 107, 2015, Art. no. .

2014 (4)

2013 (1)

J. Sun, “Large-scale nanophotonic phased array,” Nature, vol. 493, pp. 195–199, 2013, [Online]. Available: .
[Crossref]

2012 (1)

2011 (3)

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator,” J. Lightw. Technol., vol. 29, no. 23, pp. 3500–3505, 2011, doi: .
[Crossref]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Exp., vol. 19, pp. 21595–21604, 2011.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1 × 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett., vol. 99, no. 5, 2011, Art. no. .

2010 (2)

A. Hosseini, “On the fabrication of three-dimensional silicon-on-insulator based optical phased array for agile and large angle laser beam steering systems,” J. Vac. Sci. Technol. B, vol. 28, no. 6, pp. C6O1–C6O7, 2010.

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Exp., vol. 18, pp. 13655–13660, 2010.

2009 (1)

2007 (1)

N. L. Thomas, R. Houdré, M. V. Kotlyar, D. O'Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Amer. B, vol. 24, pp. 2964–2971, 2007.

1981 (1)

J. Van Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: Analysis and assessment,” J. Opt. Soc. Amer., vol. 71, pp. 803–810, 1981.

Abediasl, H.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 275–296, 2018.

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Exp., vol. 23, pp. 6509–6519, 2015.

Abiri, B.

F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic projection system,” Opt. Exp., vol. 23, pp. 21012–21022, 2015.

Aflatouni, F.

F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic projection system,” Opt. Exp., vol. 23, pp. 21012–21022, 2015.

Baets, R.

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator,” J. Lightw. Technol., vol. 29, no. 23, pp. 3500–3505, 2011, doi: .
[Crossref]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Exp., vol. 18, pp. 13655–13660, 2010.

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett., vol. 34, pp. 1477–1479, 2009.

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design. 3rd ed., Hoboken, NJ, USA: Wiley, 2005.

Bogaerts, W.

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator,” J. Lightw. Technol., vol. 29, no. 23, pp. 3500–3505, 2011, doi: .
[Crossref]

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett., vol. 34, pp. 1477–1479, 2009.

Bovington, J. T.

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Exp., vol. 19, pp. 21595–21604, 2011.

Bowers, J. E.

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, pp. 2511–2528, 2017.

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Exp., vol. 19, pp. 21595–21604, 2011.

Byrd, M. J.

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Proc. Adv. Photon., 2016, Art. no. .

Caspar, C.

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, and C. Caspar, “4x4 polymer thermo-optic directional coupler switch at 1.55 μm,” in Proc. Conf. Opt. Fiber Commun., 1994, Art. no. .

Chen, R. T.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1 × 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett., vol. 99, no. 5, 2011, Art. no. .

Chung, S.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 275–296, 2018.

Coldren, L.

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, pp. 2511–2528, 2017.

Coldren, L. A.

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Exp., vol. 19, pp. 21595–21604, 2011.

Coolbaugh, D.

Cui, T. J.

X. J. Fu, F. Yang, C. X. Liu, X. J. Wu, and T. J. Cui, “Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces,” Adv. Opt. Mater., 2020, vol. 8, Art. no. . [Online]. Available: .
[Crossref]

David de, F.

F. David de, “Recent developments in polymer-based photonic components for disruptive capacity upgrade in data centers,” J. Lightw. Technol., vol. 35, pp. 683–689, Feb. 2017.

Doylend, J. K.

J. K. Doylend, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett., vol. 37, pp. 4257–4259, 2012.

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Exp., vol. 19, pp. 21595–21604, 2011.

Feng, S.

C. Qin, K. Shang, S. Feng, G. Liu, S. Pathak, and S. J. B. Yoo, “1 × 256 multi-layer, low-loss, Si3N4 waveguide optical phased arrays with 0.050° instantaneous-field-of-view,” in Proc. 2017 Conf. Lasers Electro-Opt., San Jose, CA, USA, 2017, pp. 1–2.

Foster, A. C.

M. R. Kossey, C. Rizk, and A. C. Foster, “End-fire silicon optical phased array with half-wavelength spacing,” APL Photon., vol. 3, no. 1, 2018, Art. no. .

Fu, X. J.

X. J. Fu, F. Yang, C. X. Liu, X. J. Wu, and T. J. Cui, “Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces,” Adv. Opt. Mater., 2020, vol. 8, Art. no. . [Online]. Available: .
[Crossref]

Gross, S.

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications,” Nanophotonics, vol. 4, no. 3, pp. 332–352, 2015. [Online]. Available: .
[Crossref]

Groumas, P.

P. Groumas, “Tunable 100 Gbaud transmitter based on hybrid polymer-to-polymer integration for flexible optical interconnects,” J. Lightw. Technol., vol. 34, no. 2, pp. 407–418, Jan. 2016, doi: .
[Crossref]

Guan, B.

S. Yoo, B. Guan, and R. Scott, “Heterogeneous 2D/3D photonic integrated microsystems,” Microsyst. Nanoeng, vol. 2, 2016, Art. no. . [Online]. Available: .
[Crossref]

B. Guan, “Hybrid 3D photonic integrated circuit for optical phased array beam steering,” in Proc. Conf. Lasers Electro-Opt., 2015, Art. no. u2F.1.

Hajimiri, A.

F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic projection system,” Opt. Exp., vol. 23, pp. 21012–21022, 2015.

Hashemi, H.

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 275–296, 2018.

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Exp., vol. 23, pp. 6509–6519, 2015.

Heck, M. J. R.

M. J. R. Heck, “Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics, vol. 6, no. 1, pp. 93–107, 2017. [Online]. Available: .
[Crossref]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Exp., vol. 19, pp. 21595–21604, 2011.

Helkey, R.

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, pp. 2511–2528, 2017.

Hosseini, A.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1 × 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett., vol. 99, no. 5, 2011, Art. no. .

A. Hosseini, “On the fabrication of three-dimensional silicon-on-insulator based optical phased array for agile and large angle laser beam steering systems,” J. Vac. Sci. Technol. B, vol. 28, no. 6, pp. C6O1–C6O7, 2010.

Houdré, R.

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett., vol. 34, pp. 1477–1479, 2009.

N. L. Thomas, R. Houdré, M. V. Kotlyar, D. O'Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Amer. B, vol. 24, pp. 2964–2971, 2007.

Hulme, J. C.

J. C. Hulme, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Exp., vol. 23, pp. 5861–5874, 2015.

Hutchison, D. N.

Jágerská, J.

Katopodis, V.

V. Katopodis, “Polymer enabled 100Gbaud connectivity for datacom applications,” Opt. Commun., vol. 362, pp. 13–21, 2016, [Online]. Available: .
[Crossref]

Keil, N.

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, and C. Caspar, “4x4 polymer thermo-optic directional coupler switch at 1.55 μm,” in Proc. Conf. Opt. Fiber Commun., 1994, Art. no. .

Kleinert, M.

M. Kleinert, “Photonic integrated devices and functions on hybrid polymer platform,” in Proc. Phys. Simul. Optoelectron. Devices, 2017, Art. no. .

Komljenovic, T.

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, pp. 2511–2528, 2017.

Komorowska, K.

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator,” J. Lightw. Technol., vol. 29, no. 23, pp. 3500–3505, 2011, doi: .
[Crossref]

Kossey, M. R.

M. R. Kossey, C. Rizk, and A. C. Foster, “End-fire silicon optical phased array with half-wavelength spacing,” APL Photon., vol. 3, no. 1, 2018, Art. no. .

Kotlyar, M. V.

N. L. Thomas, R. Houdré, M. V. Kotlyar, D. O'Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Amer. B, vol. 24, pp. 2964–2971, 2007.

Krauss, T. F.

N. L. Thomas, R. Houdré, M. V. Kotlyar, D. O'Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Amer. B, vol. 24, pp. 2964–2971, 2007.

Kwong, D.

D. Kwong, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett., vol. 39, pp. 941–944, 2014.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1 × 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett., vol. 99, no. 5, 2011, Art. no. .

Lagasse, P. E.

J. Van Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: Analysis and assessment,” J. Opt. Soc. Amer., vol. 71, pp. 803–810, 1981.

Le Thomas, N.

Leake, G.

Lipson, M.

C. T. Phare, C. S. Min, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” 2018, arXiv:1802.04624.

Liu, C. X.

X. J. Fu, F. Yang, C. X. Liu, X. J. Wu, and T. J. Cui, “Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces,” Adv. Opt. Mater., 2020, vol. 8, Art. no. . [Online]. Available: .
[Crossref]

Liu, G.

C. Qin, K. Shang, S. Feng, G. Liu, S. Pathak, and S. J. B. Yoo, “1 × 256 multi-layer, low-loss, Si3N4 waveguide optical phased arrays with 0.050° instantaneous-field-of-view,” in Proc. 2017 Conf. Lasers Electro-Opt., San Jose, CA, USA, 2017, pp. 1–2.

Miller, S. A.

S. A. Miller, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica, vol. 7, no. 1, pp. 3–6, 2020.

C. T. Phare, C. S. Min, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” 2018, arXiv:1802.04624.

Min, C. S.

C. T. Phare, C. S. Min, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” 2018, arXiv:1802.04624.

Moresco, M.

Nuck, M.

M. Nuck, “Low-loss vertical MMI coupler for 3D photonic integration,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, pp. 1–3, doi: .

M. Nuck, “3D photonic integrated 4x4 multi-mode interference coupler,” in Proc. Integr. Opt.: Devices Mater. Technol., 2019, Art. no. , doi: .

O'Brien, D.

N. L. Thomas, R. Houdré, M. V. Kotlyar, D. O'Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Amer. B, vol. 24, pp. 2964–2971, 2007.

Pathak, S.

C. Qin, K. Shang, S. Feng, G. Liu, S. Pathak, and S. J. B. Yoo, “1 × 256 multi-layer, low-loss, Si3N4 waveguide optical phased arrays with 0.050° instantaneous-field-of-view,” in Proc. 2017 Conf. Lasers Electro-Opt., San Jose, CA, USA, 2017, pp. 1–2.

Peters, J. D.

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Exp., vol. 19, pp. 21595–21604, 2011.

Phare, C. T.

C. T. Phare, C. S. Min, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” 2018, arXiv:1802.04624.

Poulton, C. V.

C. V. Poulton, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, 2019, Art no. 7700108.

C. V. Poulton, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett., vol. 42, pp. 4091–4094, 2017.

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Proc. Adv. Photon., 2016, Art. no. .

Qin, C.

C. Qin, K. Shang, S. Feng, G. Liu, S. Pathak, and S. J. B. Yoo, “1 × 256 multi-layer, low-loss, Si3N4 waveguide optical phased arrays with 0.050° instantaneous-field-of-view,” in Proc. 2017 Conf. Lasers Electro-Opt., San Jose, CA, USA, 2017, pp. 1–2.

Rekhi, A.

F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic projection system,” Opt. Exp., vol. 23, pp. 21012–21022, 2015.

Rizk, C.

M. R. Kossey, C. Rizk, and A. C. Foster, “End-fire silicon optical phased array with half-wavelength spacing,” APL Photon., vol. 3, no. 1, 2018, Art. no. .

Rogier, H.

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Exp., vol. 18, pp. 13655–13660, 2010.

Scott, R.

S. Yoo, B. Guan, and R. Scott, “Heterogeneous 2D/3D photonic integrated microsystems,” Microsyst. Nanoeng, vol. 2, 2016, Art. no. . [Online]. Available: .
[Crossref]

Shang, K.

C. Qin, K. Shang, S. Feng, G. Liu, S. Pathak, and S. J. B. Yoo, “1 × 256 multi-layer, low-loss, Si3N4 waveguide optical phased arrays with 0.050° instantaneous-field-of-view,” in Proc. 2017 Conf. Lasers Electro-Opt., San Jose, CA, USA, 2017, pp. 1–2.

Shin, M. C.

Song, W.

W. Song, “High-density waveguide superlattices with low crosstalk,” Nature Commun., vol. 6, no. 1, 2015, pp. 1–9, [Online]. Available: .
[Crossref]

Stepanov, P.

P. Stepanov, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett., vol. 107, 2015, Art. no. .

Stern, B.

C. T. Phare, C. S. Min, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” 2018, arXiv:1802.04624.

Strebel, B.

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, and C. Caspar, “4x4 polymer thermo-optic directional coupler switch at 1.55 μm,” in Proc. Conf. Opt. Fiber Commun., 1994, Art. no. .

Su, Z.

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Proc. Adv. Photon., 2016, Art. no. .

Sun, J.

Sun, X.

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si photonics for practical LiDAR solutions,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

Thomas, N. L.

N. L. Thomas, R. Houdré, M. V. Kotlyar, D. O'Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Amer. B, vol. 24, pp. 2964–2971, 2007.

Van Acoleyen, K.

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator,” J. Lightw. Technol., vol. 29, no. 23, pp. 3500–3505, 2011, doi: .
[Crossref]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Exp., vol. 18, pp. 13655–13660, 2010.

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett., vol. 34, pp. 1477–1479, 2009.

van der Donk, J.

J. Van Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: Analysis and assessment,” J. Opt. Soc. Amer., vol. 71, pp. 803–810, 1981.

Van Roey, J.

J. Van Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: Analysis and assessment,” J. Opt. Soc. Amer., vol. 71, pp. 803–810, 1981.

Watts, M. R.

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett., vol. 39, pp. 4575–4578, 2014.

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Proc. Adv. Photon., 2016, Art. no. .

Withford, M. J.

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications,” Nanophotonics, vol. 4, no. 3, pp. 332–352, 2015. [Online]. Available: .
[Crossref]

Wu, X. J.

X. J. Fu, F. Yang, C. X. Liu, X. J. Wu, and T. J. Cui, “Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces,” Adv. Opt. Mater., 2020, vol. 8, Art. no. . [Online]. Available: .
[Crossref]

Yaacobi, A.

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett., vol. 39, pp. 4575–4578, 2014.

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Proc. Adv. Photon., 2016, Art. no. .

Yang, F.

X. J. Fu, F. Yang, C. X. Liu, X. J. Wu, and T. J. Cui, “Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces,” Adv. Opt. Mater., 2020, vol. 8, Art. no. . [Online]. Available: .
[Crossref]

Yao, H. H.

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, and C. Caspar, “4x4 polymer thermo-optic directional coupler switch at 1.55 μm,” in Proc. Conf. Opt. Fiber Commun., 1994, Art. no. .

Yoo, S.

S. Yoo, B. Guan, and R. Scott, “Heterogeneous 2D/3D photonic integrated microsystems,” Microsyst. Nanoeng, vol. 2, 2016, Art. no. . [Online]. Available: .
[Crossref]

Yoo, S. J. B.

C. Qin, K. Shang, S. Feng, G. Liu, S. Pathak, and S. J. B. Yoo, “1 × 256 multi-layer, low-loss, Si3N4 waveguide optical phased arrays with 0.050° instantaneous-field-of-view,” in Proc. 2017 Conf. Lasers Electro-Opt., San Jose, CA, USA, 2017, pp. 1–2.

Zawadzki, C.

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, and C. Caspar, “4x4 polymer thermo-optic directional coupler switch at 1.55 μm,” in Proc. Conf. Opt. Fiber Commun., 1994, Art. no. .

Zhang, L.

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si photonics for practical LiDAR solutions,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

Zhang, Q.

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si photonics for practical LiDAR solutions,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

Zhang, W.

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si photonics for practical LiDAR solutions,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

Zhang, Y.

Y. Zhang, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Exp., vol. 27, pp. 1929–1940, 2019.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1 × 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett., vol. 99, no. 5, 2011, Art. no. .

Zhang, Z.

Z. Zhang, “Hybrid photonic integration on a polymer platform,” Photonics, vol. 2, pp. 1005–1026, 2015. [Online]. Available: .
[Crossref]

Z. Zhang, “Multicore polymer waveguides and multistep 45° mirrors for 3D photonic integration,” IEEE Photon. Technol. Lett., vol. 26, no. 19, pp. 1986–1989, Oct. 2014.

Adv. Opt. Mater. (1)

X. J. Fu, F. Yang, C. X. Liu, X. J. Wu, and T. J. Cui, “Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces,” Adv. Opt. Mater., 2020, vol. 8, Art. no. . [Online]. Available: .
[Crossref]

APL Photon. (1)

M. R. Kossey, C. Rizk, and A. C. Foster, “End-fire silicon optical phased array with half-wavelength spacing,” APL Photon., vol. 3, no. 1, 2018, Art. no. .

Appl. Phys. Lett. (2)

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1 × 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett., vol. 99, no. 5, 2011, Art. no. .

P. Stepanov, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett., vol. 107, 2015, Art. no. .

Appl. Sci. (1)

X. Sun, L. Zhang, Q. Zhang, and W. Zhang, “Si photonics for practical LiDAR solutions,” Appl. Sci., vol. 9, no. 20, 2019, Art. no. .

IEEE J. Sel. Topics Quantum Electron. (1)

C. V. Poulton, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 25, no. 5, 2019, Art no. 7700108.

IEEE J. Solid-State Circuits (1)

S. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 275–296, 2018.

IEEE Photon. Technol. Lett. (1)

Z. Zhang, “Multicore polymer waveguides and multistep 45° mirrors for 3D photonic integration,” IEEE Photon. Technol. Lett., vol. 26, no. 19, pp. 1986–1989, Oct. 2014.

J. Lightw. Technol. (3)

F. David de, “Recent developments in polymer-based photonic components for disruptive capacity upgrade in data centers,” J. Lightw. Technol., vol. 35, pp. 683–689, Feb. 2017.

P. Groumas, “Tunable 100 Gbaud transmitter based on hybrid polymer-to-polymer integration for flexible optical interconnects,” J. Lightw. Technol., vol. 34, no. 2, pp. 407–418, Jan. 2016, doi: .
[Crossref]

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulator,” J. Lightw. Technol., vol. 29, no. 23, pp. 3500–3505, 2011, doi: .
[Crossref]

J. Opt. Soc. Amer. (1)

J. Van Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: Analysis and assessment,” J. Opt. Soc. Amer., vol. 71, pp. 803–810, 1981.

J. Opt. Soc. Amer. B (1)

N. L. Thomas, R. Houdré, M. V. Kotlyar, D. O'Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Amer. B, vol. 24, pp. 2964–2971, 2007.

J. Vac. Sci. Technol. B (1)

A. Hosseini, “On the fabrication of three-dimensional silicon-on-insulator based optical phased array for agile and large angle laser beam steering systems,” J. Vac. Sci. Technol. B, vol. 28, no. 6, pp. C6O1–C6O7, 2010.

Microsyst. Nanoeng (1)

S. Yoo, B. Guan, and R. Scott, “Heterogeneous 2D/3D photonic integrated microsystems,” Microsyst. Nanoeng, vol. 2, 2016, Art. no. . [Online]. Available: .
[Crossref]

Nanophotonics (2)

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications,” Nanophotonics, vol. 4, no. 3, pp. 332–352, 2015. [Online]. Available: .
[Crossref]

M. J. R. Heck, “Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics, vol. 6, no. 1, pp. 93–107, 2017. [Online]. Available: .
[Crossref]

Nature (1)

J. Sun, “Large-scale nanophotonic phased array,” Nature, vol. 493, pp. 195–199, 2013, [Online]. Available: .
[Crossref]

Nature Commun. (1)

W. Song, “High-density waveguide superlattices with low crosstalk,” Nature Commun., vol. 6, no. 1, 2015, pp. 1–9, [Online]. Available: .
[Crossref]

Opt. Commun. (1)

V. Katopodis, “Polymer enabled 100Gbaud connectivity for datacom applications,” Opt. Commun., vol. 362, pp. 13–21, 2016, [Online]. Available: .
[Crossref]

Opt. Exp. (7)

T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Exp., vol. 25, pp. 2511–2528, 2017.

Y. Zhang, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Exp., vol. 27, pp. 1929–1940, 2019.

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Exp., vol. 18, pp. 13655–13660, 2010.

F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic projection system,” Opt. Exp., vol. 23, pp. 21012–21022, 2015.

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Exp., vol. 19, pp. 21595–21604, 2011.

J. C. Hulme, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Exp., vol. 23, pp. 5861–5874, 2015.

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Exp., vol. 23, pp. 6509–6519, 2015.

Opt. Lett. (7)

Optica (2)

Photonics (1)

Z. Zhang, “Hybrid photonic integration on a polymer platform,” Photonics, vol. 2, pp. 1005–1026, 2015. [Online]. Available: .
[Crossref]

Other (11)

M. Nuck, “Low-loss vertical MMI coupler for 3D photonic integration,” in Proc. Eur. Conf. Opt. Commun., Rome, Italy, 2018, pp. 1–3, doi: .

M. Nuck, “3D photonic integrated 4x4 multi-mode interference coupler,” in Proc. Integr. Opt.: Devices Mater. Technol., 2019, Art. no. , doi: .

C. A. Balanis, Antenna Theory: Analysis and Design. 3rd ed., Hoboken, NJ, USA: Wiley, 2005.

M. Kleinert, “Photonic integrated devices and functions on hybrid polymer platform,” in Proc. Phys. Simul. Optoelectron. Devices, 2017, Art. no. .

C. Qin, K. Shang, S. Feng, G. Liu, S. Pathak, and S. J. B. Yoo, “1 × 256 multi-layer, low-loss, Si3N4 waveguide optical phased arrays with 0.050° instantaneous-field-of-view,” in Proc. 2017 Conf. Lasers Electro-Opt., San Jose, CA, USA, 2017, pp. 1–2.

B. Guan, “Hybrid 3D photonic integrated circuit for optical phased array beam steering,” in Proc. Conf. Lasers Electro-Opt., 2015, Art. no. u2F.1.

C. T. Phare, C. S. Min, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” 2018, arXiv:1802.04624.

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Proc. Adv. Photon., 2016, Art. no. .

[Online] Available:https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-beamprop.html

N. Keil, H. H. Yao, C. Zawadzki, B. Strebel, and C. Caspar, “4x4 polymer thermo-optic directional coupler switch at 1.55 μm,” in Proc. Conf. Opt. Fiber Commun., 1994, Art. no. .

[Online] Available:http://ict-3peat.eu/

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved