Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 16,
  • pp. 5567-5574
  • (2022)

An Enhanced Analytical Model of Nonlinear Fiber Effects for Four-Dimensional Symmetric Modulation Formats

Open Access Open Access

Abstract

Optical transmission systems intrinsically enjoy a four-dimensional (4D) constellation space, corresponding to two quadratures in two polarization states. In this paper, we introduce a general nonlinear model that is valid for 4D symmetric modulation formats. We take the inter-polarization dependency into account to derive this model. The model accounts for all perturbative nonlinear interference (NLI) terms, including self-channel, cross-channel and multi-channel interferences. Split-step Fourier simulations show that the proposed model has the ability to predict the NLI with high levels of accuracy for both low and high fiber dispersion regimes. The simulation results further show that previous models, including the EGN model, inaccurately predict the NLI in certain scenarios.

PDF Article
More Like This
Orthant-symmetric four-dimensional geometric shaping for fiber-optic channels via a nonlinear interference model

Bin Chen, Wei Ling, Yi Lei, Zhiwei Liang, and Xuwei Xue
Opt. Express 31(10) 16985-17002 (2023)

EGN model of non-linear fiber propagation

Andrea Carena, Gabriella Bosco, Vittorio Curri, Yanchao Jiang, Pierluigi Poggiolini, and Fabrizio Forghieri
Opt. Express 22(13) 16335-16362 (2014)

Accurate closed-form model for nonlinear fiber propagation supporting both high and near-zero dispersion regimes

Mahdi Ranjbar Zefreh, Fabrizio Forghieri, Stefano Piciaccia, and Pierluigi Poggiolini
Opt. Express 29(7) 10825-10852 (2021)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved