Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 9,
  • pp. 2890-2900
  • (2022)

Low Complexity Neural Network Equalization Based on Multi-Symbol Output Technique for 200+ Gbps IM/DD Short Reach Optical System

Not Accessible

Your library or personal account may give you access

Abstract

Nowadays, Neural network (NN) has been proved to be an effective solution for nonlinear equalization in short reach optical systems. However, recent research has mainly focused on implementing more powerful NNs for equalization, while ignoring their adaptability to equalization tasks. In this paper, we propose Multi-Symbol Output (MSO)-Neural Networks (NN) for nonlinear equalization in high-speed short reach optical interconnects. The results show that the proposed MSO design works well on Deep Neural Networks (DNN), Long Short-Term Memory neural networks (LSTM) and Gate Recurrent Unit (GRU), which are the recent NN-based equalization structures. By increasing output symbols of the NNs, the number of slide windows in equalization can be sharply reduced, and so the complexity is reduced. By the same time, more information is brought to the MSO-NNs in back-propagations, therefore performance gain achieved. A 212-Gb/s 1-km Pulse Amplitude Modulation (PAM)-4 optical link is experimentally demonstrated as the target system, and the proposed MSO-NN equalizers are used to compare with traditional equalization algorithms including Volterra Nonlinear Equalizer (VNE) and single-symbol output NNs. Experimental results show that MSO design could help reduce the complexity of NN required for nonlinear equalization in the target system by around 2/3, and the proposed MSO-LSTM performs much better than VNE and 1 dB better than SSO-LSTM at the same time. Based on the proposed MSO-LSTM, transmission with BER under HD-FEC over 1 km NZDSF is achieved with a ROP at -2 dBm. Our work is well expandable and the proposed MSO design can be extended to other NN-based equalizers, which can help reduce complexity and learn more info from the training data and gain performance. The proposed MSO-NNs further enhance the performance and reduces the complexity of NN equalizers, provides assurance for future real-time high-speed short-range optical systems, and brings new ideas to NN-based equalizer design.

PDF Article
More Like This
Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system

Xinyu Liu, Yongjun Wang, Xishuo Wang, Hui Xu, Chao Li, and Xiangjun Xin
Opt. Express 29(4) 5923-5933 (2021)

Attention-aided partial bidirectional RNN-based nonlinear equalizer in coherent optical systems

Yifan Liu, Victor Sanchez, Pedro J. Freire, Jaroslaw E. Prilepsky, Mahyar J. Koshkouei, and Matthew D. Higgins
Opt. Express 30(18) 32908-32923 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.