Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Near Infrared Spectroscopy
  • Vol. 30,
  • Issue 5,
  • pp. 254-263
  • (2022)

Near infrared spectroscopy calibration strategies to predict multiple nutritional parameters of pasture species from different functional groups

Not Accessible

Your library or personal account may give you access

Abstract

Near infrared reflectance (NIR) spectroscopy has been used by the agricultural industry as a rapid and inexpensive technique to quantify nutritional chemistry in plants. The aim of this study was to evaluate the performance of NIR calibrations in predicting the nutritional composition of ten pasture species that underpin livestock industries in many countries. The species comprised a range of functional diversity (C3 legumes; C3/C4 grasses; annuals/perennials) and origins (tropical/temperate; introduced/native) that grew under varied environmental conditions (control and experimentally induced warming and drought) over a period of more than two years (n = 2622). A maximal calibration set including 391 samples was used to develop and evaluate calibrations for all ten pasture species (global calibrations), as well as for subsets comprised of the plant functional groups. This study found that the global calibrations were appropriate to predict the six key nutritional quality parameters for the studied pasture species, with the highest estimation quality found for ash (ASH), crude protein (CP), amylase-treated neutral detergent fibre (aNDF) and acid detergent fibre (ADF), and the lowest for ether extract (EE) and acid detergent lignin (ADL) parameters. The plant functional group calibrations for C3 grasses performed better than the global calibrations for ASH, CP, ADF and EE parameters, whereas for C3 legumes and C4 grasses the functional group calibrations performed less well than the global calibrations for all nutritional parameters of these groups. Additionally, the calibrations were able to capture the range of variation in forage nutritional quality caused by future climate scenarios of warming and severe drought.

© 2022 The Author(s)

PDF Article
More Like This
Self-calibrating time-resolved near infrared spectroscopy

Stanislaw Wojtkiewicz, Anna Gerega, Marta Zanoletti, Aleh Sudakou, Davide Contini, Adam Liebert, Turgut Durduran, and Hamid Dehghani
Biomed. Opt. Express 10(5) 2657-2669 (2019)

Reduced interhemispheric functional connectivity of children with autism spectrum disorder: evidence from functional near infrared spectroscopy studies

Huilin Zhu, Yuebo Fan, Huan Guo, Dan Huang, and Sailing He
Biomed. Opt. Express 5(4) 1262-1274 (2014)

Evaluation of univariate and multivariate calibration strategies for the direct determination of total carbon in soils by laser-induced breakdown spectroscopy: tutorial

Wesley Nascimento Guedes, Diego Victor Babos, Vinícius Câmara Costa, Carla Pereira De Morais, Vitor da Silveira Freitas, Kleydson Stenio, Alfredo Augusto Pereira Xavier, Luís Carlos Leva Borduchi, Paulino Ribeiro Villas-Boas, and Débora Marcondes Bastos Pereira Milori
J. Opt. Soc. Am. B 40(5) 1319-1330 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.