Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Probabilistic low-margin optical-network design with multiple physical-layer parameter uncertainties

Not Accessible

Your library or personal account may give you access

Abstract

Analytical models for quality of transmission (QoT) estimation require safety design margins to account for uncertain knowledge of input parameters. We propose and evaluate a design procedure that gradually decreases these margins in the presence of multiple physical-layer uncertainties (namely, connector loss, erbium-doped fiber amplifier gain ripple, and fiber type) by leveraging monitoring data to build a probabilistic machine-learning-based QoT regressor. We evaluate the savings from margin reduction in terms of occupied spectrum and number of installed transponders in the ${\rm C}$ and ${\rm C} + {\rm L}$ bands and demonstrate that 4%–12% transponder/spectrum savings can be achieved in realistic network instances by simply leveraging the SNR monitored at receivers and paying off a low increment in the lightpath disruption probability (at most 1%–4%).

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Learning Process for Reducing Uncertainties on Network Parameters and Design Margins

E. Seve, J. Pesic, C. Delezoide, S. Bigo, and Y. Pointurier
J. Opt. Commun. Netw. 10(2) A298-A306 (2018)

Invariant convolutional neural network for robust and generalizable QoT estimation in fiber-optic networks

Qihang Wang, Zhuojun Cai, Alan Pak Tao Lau, Yang Li, and Faisal Nadeem Khan
J. Opt. Commun. Netw. 15(7) 431-441 (2023)

Multi-Period Planning With Actual Physical and Traffic Conditions

P. Soumplis, K. Christodoulopoulos, M. Quagliotti, A. Pagano, and E. Varvarigos
J. Opt. Commun. Netw. 10(1) A144-A153 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.