Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Large-scale quantum key distribution network simulator

Not Accessible

Your library or personal account may give you access

Abstract

The wide range of supported services in modern telecommunication networks has increased the demand for highly secure means of communication. Common security frameworks based on the computational security model are expected to become insecure due to significant advances in quantum computing. Quantum key distribution (QKD), a new secret key agreement primitive, enables long-anticipated practical information-theoretical security (ITS). Over the past two decades, academic and industrial communities have devoted their time and resources to developing QKD-based networks that can distribute and serve ITS keys to remote parties. However, because the availability of QKD network testbeds to the larger research community is limited and the deployment of such systems is costly and difficult, progress in this area is noticeably slow. To address this problem and spur future development and education, we provide a valuable, unique tool for simulating a QKD network. The tool is essential to testing novel network management methodologies applied to large-scale QKD networks. The simulator model contained in the tool was validated by simulating a network with six nodes and three pairs of users. The results indicate that the designed functional elements operate correctly.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Cost-Efficient Quantum Key Distribution (QKD) Over WDM Networks

Yuan Cao, Yongli Zhao, Jianquan Wang, Xiaosong Yu, Zhangchao Ma, and Jie Zhang
J. Opt. Commun. Netw. 11(6) 285-298 (2019)

Key-count differential-based proactive key relay algorithm for scalable quantum-secured networking

Chankyun Lee, Yonghwan Kim, Kyuseok Shim, and Wonhyuk Lee
J. Opt. Commun. Netw. 15(5) 282-293 (2023)

Comparison and optimization of different routing methods for meshed QKD networks using trusted nodes

Tim Johann, Mario Wenning, Daniel Giemsa, Annika Dochhan, Matthias Gunkel, Tobias Fehenberger, and Stephan Pachnicke
J. Opt. Commun. Netw. 16(3) 382-391 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.