Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-Dimensional Resource Allocation in Space Division Multiplexing Elastic Optical Networks

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we present a comprehensive model to address three-dimensional resource assignment (3D-RA) in space division multiplexing elastic optical networks using few-mode multi-core fibers (FM-MCFs). Accordingly, we present new 3D-RA algorithms in which the consequential resources include the spectrum, modes, and cores. We consider all spectral and spatial diversity types in FM-MCFs and introduce five 3D-RA scenarios including (i) single-mode and single-core (SMSC), (ii) single-mode and multi-core (SMMC), (iii) multi-mode and single-core (MMSC), (iv) multi-mode and multi-core (MMMC), and finally, (v) hybrid 3D-RA. In each scenario, the fractional joint (FrJ-) and independent (Ind-) switching (Sw) schemes are introduced and explored for the proposed scenarios. By using the FrJ- and Ind-Sw schemes, we performed the simulation process for the above-mentioned scenarios. The simulation results confirm the efficiency of the proposed 3D-RA algorithms. Furthermore, various 3D-RA scenarios are comprehensively compared using the obtained results in terms of vital metrics introduced in this work. It is also indicated that the SMSC and MMSC scenarios present superior performance for Ind-Sw and FrJ-Sw 3D-RA scenarios, respectively, in comparison to other proposed non-hybrid scenarios. The obtained results also reveal that the quad-hybrid 3D-RA scenario results in the lowest blocking probability in comparison with all other introduced scenarios in both switching schemes. These results recommend an efficient simulation system for compatible transceivers for Ind- and FrJ-Sw schemes.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Adaptive Modulation and Flexible Resource Allocation in Space-Division-Multiplexed Elastic Optical Networks

Mohsen Yaghubi-Namaad, Akbar Ghaffarpour Rahbar, and Behrooz Alizadeh
J. Opt. Commun. Netw. 10(3) 240-251 (2018)

Dynamic Resource Allocation for Immediate and Advance Reservation in Space-Division-Multiplexing-Based Elastic Optical Networks

Seitaro Sugihara, Yusuke Hirota, Shohei Fujii, Hideki Tode, and Takashi Watanabe
J. Opt. Commun. Netw. 9(3) 183-197 (2017)

Space-Division Multiplexing in Data Center Networks: On Multi-Core Fiber Solutions and Crosstalk-Suppressed Resource Allocation

Hui Yuan, Marija Furdek, Ajmal Muhammad, Arsalan Saljoghei, Lena Wosinska, and Georgios Zervas
J. Opt. Commun. Netw. 10(4) 272-288 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.