Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

P4 Edge Node Enabling Stateful Traffic Engineering and Cyber Security

Not Accessible

Your library or personal account may give you access

Abstract

Next-generation edge nodes interfacing innovative IT clusters, 5G fronthaul, and internet of things (IoT) gateways to the optical metro/core network will require advanced and dynamic online quality of service (QoS) per-flow traffic treatment, assuring ultra-low latency requirements. However, current software-defined networking (SDN) implementations (e.g., OpenFlow) do not support forwarding procedures based on the network state, profile variations, and the history of flow statistics at the node level. Currently, such procedures require intervention by the SDN controller, leading to scalability issues and additional latency in data plane forwarding. Moreover, severe security challenges are expected to affect such nodes and threaten IT resources. Thus, increasing bandwidths will require direct deep packet inspection to avoid involvement of the SDN controller, as performed currently, or dedicated and costly security systems. This paper leverages on the potential of the programming protocol-independent packet processors (P4) open source language, recently introduced by the inventors of OpenFlow, to program the data plane structure and behavior of an SDN switch. P4 is able to instantiate custom pipelines and stateful objects, enabling complex workflows, user-defined protocols/headers, and finite state machines enforcement. Moreover, P4 allows portable implementations over different hardware targets, thus opening the way to open source fully programmable devices. Special effort is dedicated to motivate and apply P4 within a multilayer edge scenario, proposing the architecture and the applicability of an SDN P4-enabled packet-over-optical node. Moreover, three specific multilayer use cases covering dynamic traffic engineering (TE) (e.g., traffic offload and optical bypass) and cybersecurity (e.g., distributed denial of service port scan) are discussed and addressed through P4-based solutions. Experimental evaluations have been conducted over a multilayer SDN network exploiting reference P4 software switches (i.e., the behavioral model version 2, or BMV2) and field-programmable gate arrays (FPGAs) at 10 gigabit Ethernet optical interfaces. Extensive results report effective dynamic TE and cybersecurity mitigation enforcement at P4 switches without any controller intervention, showing excellent scalability performance and overall latencies practically in line with current commercial OpenFlow switches.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Extending P4 in-band telemetry to user equipment for latency- and localization-aware autonomous networking with AI forecasting

Davide Scano, Francesco Paolucci, Koteswararao Kondepu, Andrea Sgambelluri, Luca Valcarenghi, and Filippo Cugini
J. Opt. Commun. Netw. 13(9) D103-D114 (2021)

Network Service Chaining Using Segment Routing in Multi-Layer Networks

Francesco Paolucci
J. Opt. Commun. Netw. 10(6) 582-592 (2018)

Telemetry and AI-based security P4 applications for optical networks [Invited]

Filippo Cugini, Davide Scano, Alessio Giorgetti, Andrea Sgambelluri, Lorenzo De Marinis, Piero Castoldi, and Francesco Paolucci
J. Opt. Commun. Netw. 15(1) A1-A10 (2023)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved