Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Performance assessment of a fast optical add-drop multiplexer-based metro access network with edge computing

Not Accessible

Your library or personal account may give you access

Abstract

Next-generation metro access nodes with edge computing need to be redesigned to co-allocate advanced optical technologies, computing, and storage resources to support the upcoming multiple applications in 5G. In this paper, we present a novel metro access edge computing node based on a fast optical add-drop multiplexer with submicrosecond reconfiguration and control for low-latency operation. We investigate the network performance, the location of the edge computing nodes, and the computing resources dimensioning and utilization in order to fulfill the stringent latency requirement in 5G networks. Network function virtualization and network slicing have been considered in the model to emulate the realistic network operation. Optimization of the network, node location, and computing resources in terms of latency and packet loss ratio is numerically investigated via the OMNeT++ simulator under three different types of 5G applications (Massive Internet of Things, content delivery network, and loss-sensitive traffic). Considering a typical metro access network topology with 20 nodes covering a population of around 1 million, numerical results show that less than 200 µs latency is guaranteed for 5G network applications by deploying more than 6 edge computing nodes with 80 servers for each node.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Flexible low-latency metro-access converged network architecture based on optical time slice switching

Jialong Li, Nan Hua, Zhizhen Zhong, Yufang Yu, Xiaoping Zheng, and Bingkun Zhou
J. Opt. Commun. Netw. 11(12) 624-635 (2019)

Demonstration of latency-aware 5G network slicing on optical metro networks

B. Shariati, L. Velasco, J.-J. Pedreno-Manresa, A. Dochhan, R. Casellas, A. Muqaddas, O. González de Dios, L. Luque Canto, B. Lent, J. E. López de Vergara, S. López-Buedo, F. Moreno, P. Pavón, M. Ruiz, S. K. Patri, A. Giorgetti, F. Cugini, A. Sgambelluri, R. Nejabati, D. Simeonidou, R.-P. Braun, A. Autenrieth, J.-P. Elbers, J. K. Fischer, and R. Freund
J. Opt. Commun. Netw. 14(1) A81-A90 (2022)

Scalable and low server-to-server latency data center network architecture based on optical packet inter-rack and intra-rack switching

Georgios Drainakis, Peristera Baziana, and Adonis Bogris
J. Opt. Commun. Netw. 15(11) 804-819 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.