Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Learning Life Cycle to Speed Up Autonomic Optical Transmission and Networking Adoption

Not Accessible

Your library or personal account may give you access

Abstract

Autonomic optical transmission and networking requires machine learning (ML) models to be trained with large datasets. However, the availability of enough real data to produce accurate ML models is rarely ensured since new optical equipment and techniques are continuously being deployed in the network. One option is to generate data from simulations and lab experiments, but such data could not cover the whole features space and would translate into inaccuracies in the ML models. In this paper, we propose an ML-based algorithm life cycle to facilitate ML deployment in real operator networks. The dataset for ML training can be initially populated based on the results from simulations and lab experiments. Once ML models are generated, ML retraining can be performed after inaccuracies are detected to improve their precision. Illustrative numerical results show the benefits of the proposed learning cycle for general use cases. In addition, two specific use cases are proposed and demonstrated that implement different learning strategies: (i) a two-phase strategy performing out-of-field training using data from simulations and lab experiments with generic equipment, followed by an in-field adaptation to support heterogeneous equipment (the accuracy of this strategy is shown for a use case of failure detection and identification), and (ii) in-field retraining, where ML models are retrained after detecting model inaccuracies. Different approaches are analyzed and evaluated for a use case of autonomic transmission, where results show the significant benefits of collective learning.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Knowledge management in optical networks: architecture, methods, and use cases [Invited]

Marc Ruiz, Fatemehsadat Tabatabaeimehr, and Luis Velasco
J. Opt. Commun. Netw. 12(1) A70-A81 (2020)

Accurate Quality of Transmission Estimation With Machine Learning

Ippokratis Sartzetakis, Konstantinos (Kostas) Christodoulopoulos, and Emmanouel (Manos) Varvarigos
J. Opt. Commun. Netw. 11(3) 140-150 (2019)

Machine Learning Models for Estimating Quality of Transmission in DWDM Networks

Rui Manuel Morais and João Pedro
J. Opt. Commun. Netw. 10(10) D84-D99 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.