Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Comparison of domain adaptation and active learning techniques for quality of transmission estimation with small-sized training datasets [Invited]

Abstract

Machine learning (ML) is currently being investigated as an emerging technique to automate quality of transmission (QoT) estimation during lightpath deployment procedures in optical networks. Even though the potential network-resource savings enabled by ML-based QoT estimation has been confirmed in several studies, some practical limitations hinder its adoption in operational network deployments. Among these, the lack of a comprehensive training dataset is recognized as a main limiting factor, especially in the early network deployment phase. In this study, we compare the performance of two ML methodologies explicitly designed to augment small-sized training datasets, namely, active learning (AL) and domain adaptation (DA), for the estimation of the signal-to-noise ratio (SNR) of an unestablished lightpath. This comparison also allows us to provide some guidelines for the adoption of these two techniques at different life stages of a newly deployed optical network infrastructure. Results show that both AL and DA permit us, starting from limited datasets, to reach a QoT estimation capability similar to that achieved by standard supervised learning approaches working on much larger datasets. More specifically, we observe that a few dozen additional samples acquired from selected probe lightpaths already provide significant performance improvement for AL, whereas a few hundred samples gathered from an external network topology are needed in the case of DA.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
On the benefits of domain adaptation techniques for quality of transmission estimation in optical networks

Cristina Rottondi, Riccardo di Marino, Mirko Nava, Alessandro Giusti, and Andrea Bianco
J. Opt. Commun. Netw. 13(1) A34-A43 (2021)

Reducing probes for quality of transmission estimation in optical networks with active learning

Dario Azzimonti, Cristina Rottondi, and Massimo Tornatore
J. Opt. Commun. Netw. 12(1) A38-A48 (2020)

ML-assisted QoT estimation: a dataset collection and data visualization for dataset quality evaluation

Geronimo Bergk, Behnam Shariati, Pooyan Safari, and Johannes K. Fischer
J. Opt. Commun. Netw. 14(3) 43-55 (2022)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved