Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Deep learning-based real-time analysis of lightpath optical constellations [Invited]

Not Accessible

Your library or personal account may give you access

Abstract

Optical network automation requires accurate physical layer models, not only for provisioning but also for real-time analysis. In particular, in-phase (I) and quadrature (Q) constellation analysis enables deep understanding of the characteristics of optical connections (lightpaths), e.g., their length. In this paper, we present methods for modeling lightpaths based on deep learning. Specifically, we propose using autoencoders (AEs) and deep neural networks. Models are trained and composed in a sandbox domain with the information received from the network controller and sent to the node agent that uses them to compare the features extracted from the received signal and the expected features returned by the models. We investigate two different use cases for lightpath analysis focused on lightpath length and optical signal power. The results show a remarkable accuracy for the lightpath modeling and length prediction and a noticeable performance of the AEs for unsupervised IQ constellation feature extraction and relevance analysis.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
OCATA: a deep-learning-based digital twin for the optical time domain

D. Sequeira, M. Ruiz, N. Costa, A. Napoli, J. Pedro, and L. Velasco
J. Opt. Commun. Netw. 15(2) 87-97 (2023)

Applications of the OCATA time domain digital twin: from QoT estimation to failure management

M. Devigili, M. Ruiz, N. Costa, C. Castro, A. Napoli, J. Pedro, and L. Velasco
J. Opt. Commun. Netw. 16(2) 221-232 (2024)

Quality-aware resource provisioning for multiband elastic optical networks: a deep-learning-assisted approach

Rana Kumar Jana, Bijoy Chand Chatterjee, Abhishek Pratap Singh, Anand Srivastava, Biswanath Mukherjee, Andrew Lord, and Abhijit Mitra
J. Opt. Commun. Netw. 14(11) 882-893 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.