Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Confidentiality-preserving machine learning algorithms for soft-failure detection in optical communication networks

Not Accessible

Your library or personal account may give you access

Abstract

Automated fault management is at the forefront of next-generation optical communication networks. The increase in complexity of modern networks has triggered the need for programmable and software-driven architectures to support the operation of agile and self-managed systems. In these scenarios, the European Telecommunications Standards Institute zero-touch network and service management approach is imperative. The need for machine learning algorithms to process the large volume of telemetry data brings safety concerns as distributed cloud-computing solutions become the preferred approach for deploying reliable communication network automation. This paper’s contribution is twofold. First, we propose a simple yet effective method to guarantee the confidentiality of the telemetry data based on feature scrambling. The method allows the operation of third-party computational services without direct access to the full content of the collected data. Additionally, the effectiveness of four unsupervised machine learning algorithms for soft-failure detection is evaluated when applied to the scrambled telemetry data. The methods are based on factor analysis, principal component analysis, nonlinear principal component analysis, and singular value decomposition. Most dimensionality reduction algorithms have the common property that they can maintain similar levels of fault classification performance while hiding the data structure from unauthorized access. Evaluations of the proposed algorithms demonstrate this capability.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Machine-learning-based soft-failure localization with partial software-defined networking telemetry

Kayol S. Mayer, Jonathan A. Soares, Rossano P. Pinto, Christian E. Rothenberg, Dalton S. Arantes, and Darli A. A. Mello
J. Opt. Commun. Netw. 13(10) E122-E131 (2021)

Optical network security management: requirements, architecture, and efficient machine learning models for detection of evolving threats [Invited]

Marija Furdek, Carlos Natalino, Andrea Di Giglio, and Marco Schiano
J. Opt. Commun. Netw. 13(2) A144-A155 (2021)

Machine learning framework for timely soft-failure detection and localization in elastic optical networks

Sadananda Behera, Tania Panayiotou, and Georgios Ellinas
J. Opt. Commun. Netw. 15(10) E74-E85 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.