Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Digital-twin-assisted meta learning for soft-failure localization in ROADM-based optical networks

Not Accessible

Your library or personal account may give you access

Abstract

Reconfigurable optical add/drop multiplexer (ROADM) nodes are evolving towards high-degree architectures to support growing traffic and enable flexible network connectivity. Due to the complex composition of high-degree ROADMs, soft failures may occur between both inter- and intra-node components, like wavelength selective switches and fiber spans. The intricate ROADM structure significantly contributes to the challenge of localizing inter-/intra-node soft failures in ROADM-based optical networks. Machine learning (ML) has shown to be a promising solution to the problem of soft-failure localization, enabling network operators to take accurate and swift measures to overcome such challenges. However, data scarcity is a main hindrance when using ML for soft-failure localization, especially in the complex scenario of inter- and intra-node soft failures. In this work, we propose a digital-twin-assisted meta-learning framework to localize inter-/intra-node soft failures with limited samples. In our proposed framework, we construct several mirror models using a digital twin of the physical optical network and then generate multiple training tasks. These training tasks serve as pretraining data for the meta learner. Then, we use real data for fine-tuning and testing of the meta learner. The proposed framework is compared with the rule-based reasoning method, transfer-learning-based method, and artificial-neural-network-based method with no pretraining. Experimental results indicate that the proposed framework improves localization accuracy by over 15%, 33%, and 54%, on average, compared to benchmark approaches, respectively.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Suspect fault screen assisted graph aggregation network for intra-/inter-node failure localization in ROADM-based optical networks

Ruikun Wang, Jiawei Zhang, Shuangyi Yan, Chuidian Zeng, Hao Yu, Zhiqun Gu, Bojun Zhang, Tarik Taleb, and Yuefeng Ji
J. Opt. Commun. Netw. 15(7) C88-C99 (2023)

Experimental investigation of machine-learning-based soft-failure management using the optical spectrum

Lars E. Kruse, Sebastian Kühl, Annika Dochhan, and Stephan Pachnicke
J. Opt. Commun. Netw. 16(2) 94-103 (2024)

Machine-learning-based soft-failure localization with partial software-defined networking telemetry

Kayol S. Mayer, Jonathan A. Soares, Rossano P. Pinto, Christian E. Rothenberg, Dalton S. Arantes, and Darli A. A. Mello
J. Opt. Commun. Netw. 13(10) E122-E131 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.