Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wavelength Assignment in Multi-Carrier Distributed Optical Ring Networks With Wavelength Reuse

Not Accessible

Your library or personal account may give you access

Abstract

This paper investigates the problem of wavelength assignment in wavelength reusable multi-carrier distributed (WRMD) wavelength-division-multiplexing (WDM) ring networks. In conventional WDM ring networks, each edge node (EN) has its own light sources, and optical channels, called lightpaths, are established by using optical carriers generated from laser diodes (LDs) at the source EN. However, such networks will suffer from the need for complicated wavelength management (e.g., monitoring LDs, avoiding wavelength collision) in the future since each EN requires a large number of LDs to deal with the exponential increase in traffic. On the other hand, a WRMD ring network overcomes this problem. In this network, lightpaths between source and destination ENs are established by using carriers generated from a centralized multi-carrier light source. Moreover, the carrier regeneration technique is applied for the purpose of reducing the number of wavelengths used for lightpath establishment. Although optical carrier regeneration reduces the number of wavelengths, the quality of the regenerated carrier is slightly degraded after carrier regeneration. Therefore, in the WRMD network, the allowable number of carrier regenerations per wavelength must be limited in order to avoid communication error. This paper formulates the wavelength assignment problem, minimizing the number of wavelengths needed to establish all requested lightpaths, as the vertex coloring problem, and then an integer linear programming (ILP) solution is provided. Since ILP problems are non-deterministic polynomial-time- (NP-) complete, a heuristic algorithm is developed. Numerical results indicate that our developed algorithm performs well in our test cases. It is observed that one and two carrier regenerations per wavelength reduce the number of wavelengths for lightpath establishment by approximately 50% and 60%, respectively, compared to that without carrier regeneration. The results also show that regenerating carriers more than two times per wavelength has little effect on the required number of wavelengths regardless of the number of ENs.

©2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of Blocking Probability for First-Fit Wavelength Assignment in Transmission-Impaired Optical Networks

Jun He, Maïté Brandt-Pearce, and Suresh Subramaniam
J. Opt. Commun. Netw. 3(5) 411-425 (2011)

Wavelength Assignment for Physical-Layer-Impaired Optical Networks Using Evolutionary Computation

Carmelo J. A. Bastos-Filho, Daniel A. R. Chaves, Felipe S. F. e Silva, Helder A. Pereira, and Joaquim F. Martins-Filho
J. Opt. Commun. Netw. 3(3) 178-188 (2011)

Efficient Impairment-Constrained 3R Regenerator Placement for Light-Trees in Optical Networks

Yi Zhu, Xiaofeng Gao, Weili Wu, and Jason P. Jue
J. Opt. Commun. Netw. 3(4) 359-371 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved