Abstract
To meet challenging 5G capacity requirements, operators are densifying their cellular networks by deploying additional small cells to cover hot spots, and such an increase in the number and density of cells may result in excessive numbers of handovers. In this study, we propose a handover reduction mechanism implemented in a cloud radio access network (CRAN) by exploiting the high capacity of an optical access network serving as a “fronthaul.” CRAN has been proposed as a 5G radio access network architecture, where the digital unit (DU) of a conventional base station (BS) is separated from the radio unit (RU) and moved to the “cloud” (DU-cloud) for better mobility management and cost saving. Separating RUs and DUs requires a low-latency and high-bandwidth 5G transport network to handle “fronthaul” traffic, for which optical access is an excellent choice. Here, we present a new 5G architecture, called virtualized-CRAN (V-CRAN), moving toward a cell-less 5G mobile network architecture. We leverage the concept of a “virtualized-BS” (V-BS) that can be formed by exploiting several enabling technologies such as software-defined radio and coordinated multi-point transmission/reception. A V-BS can be formed on a per-user basis by allocating virtualized resources on demand so that common signals can be jointly transmitted from multiple RUs to the user without triggering handover. We first model the handover reduction optimization problem for a scenario where future mobility information is known, and then propose a suite of algorithms for a scenario where future information is unknown. Simulation results show that V-CRAN can enhance the throughput of users at the cell-edge, as well as significantly reduce the number of handovers, handover delay, and failure rate.
© 2016 Optical Society of America
Full Article | PDF ArticleMore Like This
Rodrigo Izidoro Tinini, Daniel Macêdo Batista, Gustavo Bittencourt Figueiredo, Massimo Tornatore, and Biswanath Mukherjee
J. Opt. Commun. Netw. 11(4) B37-B48 (2019)
Sandip Das, Frank Slyne, Daniel Kilper, and Marco Ruffini
J. Opt. Commun. Netw. 15(7) C100-C107 (2023)
Francesco Musumeci, Omran Ayoub, Monica Magoni, and Massimo Tornatore
J. Opt. Commun. Netw. 11(4) B71-B82 (2019)