Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Flexible Interconnection of Scalable Systems Integrated Using Optical Networks (FISSION) Data-Center—Concepts and Demonstration

Not Accessible

Your library or personal account may give you access

Abstract

With Internet traffic doubling almost every other year, data-center (DC) scalability is destined to play a critical role in enabling future communications. While many DC architectures are proposed to tackle this issue by leveraging optics in DCs, most fail to scale efficiently. We demonstrate flexible interconnection of scalable systems integrated using optical networks (FISSION), which is a scalable, fault-tolerant DC architecture based on a switchless optical-bus backplane and carrier-class switches. The FISSION DC can scale to a large number of servers (even up to 1 million servers) using off-the-shelf optics and commodity electronics. Its backplane comprises multiple, concentric bus-based fiber rings to create a switchless core. Sectors, which constitute top-of-the-rack switches along with server interconnection pods, are connected to this switchless backplane in a unique opto-electronic architectural framework to handle contention. The FISSION protocol uses segment-routing paradigms for use within the DC as well as an SDN-based standardized carrier-class protocol. In this paper, we highlight, through three use cases, a FISSION test-bed, and show its feasibility in a realistic setting. These use cases include communication within the FISSION DC, in situ addition deletion of servers at scale and equal-cost multipath (ECMP) provisioning.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
POTORI: A Passive Optical Top-of-Rack Interconnect Architecture for Data Centers

Yuxin Cheng, Matteo Fiorani, Rui Lin, Lena Wosinska, and Jiajia Chen
J. Opt. Commun. Netw. 9(5) 401-411 (2017)

Scalable and low server-to-server latency data center network architecture based on optical packet inter-rack and intra-rack switching

Georgios Drainakis, Peristera Baziana, and Adonis Bogris
J. Opt. Commun. Netw. 15(11) 804-819 (2023)

HiFOST: A Scalable and Low-Latency Hybrid Data Center Network Architecture Based on Flow-Controlled Fast Optical Switches

Fulong Yan, Xuwei Xue, and Nicola Calabretta
J. Opt. Commun. Netw. 10(7) B1-B14 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.