Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ambient Temperature Independent Thermopiles for Radiation Pyrometry

Not Accessible

Your library or personal account may give you access

Abstract

Most thermopiles show a decrease in sensitivity when ambient temperature increases. By experimental study of the temperature dependence of the various factors which affect the sensitivity (radiation loss, gaseous conduction and convection loss, and losses through the solid supports) it has been determined that a major contributor to the effect at atmospheric pressure is the temperature coefficient of thermal conductivity of the thermocouple wires. Several ambient temperature independent thermopiles operating at atmospheric pressure have been made either by adjusting the size of the thermocouple wires or by addition of other solid conducting supports between the receiver and the cold junctions.

A mathematical analysis of the thermal system of a thermopile has led to a simplified formula for determining the proper materials and dimensions required to obtain ambient temperature independence. As a direct result of the analysis it can be stated that any thermopile, operated at atmospheric pressure, can be made ambient temperature independent by the proper choice of a thermal shunt between the receiver and the cold junctions. Limitations of the analysis are discussed. Experimental confirmation of the method is presented.

© 1951 Optical Society of America

Full Article  |  PDF Article
More Like This
Low Temperature Radiation Pyrometry in Industry

J. C. Mouzon and C. A. Dyer
J. Opt. Soc. Am. 39(3) 203-210 (1949)

Rapid Response Thermopiles*

Louis Harris
J. Opt. Soc. Am. 36(10) 597-603 (1946)

Solid-Backed Evaporated Thermopile Radiation Detectors

Robert W. Astheimer and Seymour Weiner
Appl. Opt. 3(4) 493-500 (1964)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.