Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Intensity and Damping Dependence of Various Parameters Describing Spectral-Line Shapes

Not Accessible

Your library or personal account may give you access

Abstract

Analytical expressions are presented for the frequency dependence of loss factor, conductivity, loss tangent, amplitude attenuation per radian (absorption index), imaginary refractive index, amplitude and power attenuation per unit length (absorption coefficient), and reflectivity for a damped harmonic oscillator system. Equations are given for the displacement of maxima of these parameters as a function of line strength and width (intensity and damping). Some limiting value relations are given, and the functional dependences of the parameters illustrated graphically. Applications to physical problems are discussed briefly.

© 1959 Optical Society of America

Full Article  |  PDF Article
More Like This
Spectral Emissivity of Carbon Dioxide from 1800–2500 cm−1*

Gilbert N. Plass
J. Opt. Soc. Am. 49(8) 821-828 (1959)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.