Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nonlinear visual responses to flickering sinusoidal gratings

Not Accessible

Your library or personal account may give you access

Abstract

Over a range of high temporal and low spatial frequencies, counterphase flickering gratings evoke the so-called frequency-doubling illusion, in which the apparent brightness of the grating varies at twice its real spatial frequency. The form of the nonlinearity that causes this second-harmonic distortion of the visual response was determined by a cancellation technique. The harmonic distortion can be measured as a function of amplitude (or contrast) by adding to the flickering grating a real, nonflickering, double-frequency component with the amplitude and phase required to cancel the illusory second harmonic. Harmonic distortion curves obtained in this way imply that the nonlinearity is of the form |s|p, where s is the stimulus pattern (without its dc component) and p is close to 0.6. If p = 1, or if the absolute value is not taken, this expression predicts distortion curves that differ significantly from the experimental results. Hence neither rectification nor compression alone is sufficient to account for the second-harmonic distortion; both are required.

© 1981 Optical Society of America

Full Article  |  PDF Article
More Like This
Theory of flicker and transient responses. III. An essential nonlinearity

D. H. Kelly and R. E. Savoie
J. Opt. Soc. Am. 68(11) 1481-1490 (1978)

Criterion-free pattern and flicker thresholds

Christina A. Burbeck
J. Opt. Soc. Am. 71(11) 1343-1350 (1981)

Theory of Flicker and Transient Responses,* II. Counterphase Gratings

D. H. Kelly
J. Opt. Soc. Am. 61(5) 632-640 (1971)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.